MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?

畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信

MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信

この記事では、移動平均クロスオーバーシグナルをTelegramに送信するMQL5-Telegram統合エキスパートアドバイザー(EA)を作成します。移動平均クロスオーバーから売買シグナルを生成し、MQL5で必要なコードを実装し、統合がシームレスに機能するようにするプロセスを詳しく説明します。その結果、リアルタイムの取引アラートをTelegramのグループチャットに直接提供するシステムが完成します。
preview
ニューラルネットワークが簡単に (第42回):先延ばしのモデル、理由と解決策

ニューラルネットワークが簡単に (第42回):先延ばしのモデル、理由と解決策

強化学習の文脈では、モデルの先延ばしにはいくつかの理由があります。この記事では、モデルの先延ばしの原因として考えられることと、それを克服するための方法について考察しています。
preview
一からの取引エキスパートアドバイザーの開発(第24部):システムの堅牢性の提供(I)

一からの取引エキスパートアドバイザーの開発(第24部):システムの堅牢性の提供(I)

この記事では、堅牢で安全な使用を保証するために、システムの信頼性を高めます。望ましい堅牢性を実現する方法の1つは、コードを可能な限り再利用して、常にさまざまな場合にテストされるようにすることです。しかし、これは方法の1つにすぎません。もう1つは、OOPを使用することです。
preview
多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

EA開発の主な段階を概説しましょう。最初におこなうべき重要な作業の1つは、開発した取引戦略のインスタンスを最適化することです。最適化プロセスにおいて、テスターが通過したパスに関する必要な情報を一箇所に集約してみましょう。
preview
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする

ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第38回):ボリンジャーバンド

知っておくべきMQL5ウィザードのテクニック(第38回):ボリンジャーバンド

ボリンジャーバンドは、多くのトレーダーが手動で取引を発注し、決済するために使用する、非常に一般的なエンベロープ指標です。この指標が生成する可能性のあるシグナルをできるだけ多く検討し、ウィザードで組み立てたエキスパートアドバイザー(EA)でどのように使用できるかを見ていきます。
DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録
DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録

DoEasyライブラリでのその他のクラス(第72部): コレクション内のチャートオブジェクトパラメータの追跡と記録

本稿では、チャートオブジェクトクラスとそのコレクションの操作を完成します。また、チャートプロパティとそのウィンドウの変更の自動追跡を実装し、オブジェクトプロパティに新しいパラメータを保存します。このような変更により、を将来チャートコレクション全体のイベント機能実装できるようになります。
preview
ニューラルネットワークが簡単に(第52回):楽観論と分布補正の研究

ニューラルネットワークが簡単に(第52回):楽観論と分布補正の研究

経験再現バッファに基づいてモデルが訓練されるにつれて、現在のActor方策は保存されている例からどんどん離れていき、モデル全体としての訓練効率が低下します。今回は、強化学習アルゴリズムにおけるサンプルの利用効率を向上させるアルゴリズムについて見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第02回):コホネンマップ

知っておくべきMQL5ウィザードのテクニック(第02回):コホネンマップ

この連載では、MQL5ウィザードがトレーダーの主力であるべきことを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。
preview
ニューラルネットワークが簡単に(第49回):Soft Actor-Critic

ニューラルネットワークが簡単に(第49回):Soft Actor-Critic

連続行動空間の問題を解決するための強化学習アルゴリズムについての議論を続けます。この記事では、Soft Actor-Critic (SAC)アルゴリズムについて説明します。SACの主な利点は、期待される報酬を最大化するだけでなく、行動のエントロピー(多様性)を最大化する最適な方策を見つけられることです。
preview
ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム

ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム

強化学習法の研究を続けます。前回は、Deep Q-Learning手法に触れました。この手法では、特定の状況下でとった行動に応じて、これから得られる報酬を予測するようにモデルを訓練します。そして、方策と期待される報酬に応じた行動がとられます。ただし、Q関数を近似的に求めることは必ずしも可能ではありません。その近似が望ましい結果を生み出さないこともあります。このような場合、効用関数ではなく、行動の直接的な方針(戦略)に対して、近似的な手法が適用されます。その1つが方策勾配です。
DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備
DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備

DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備

この記事では、ティックデータの更新をリアルタイムで実装し、板情報を操作するための銘柄オブジェクトクラスを準備します(DOM自体は次の記事で実装されます)。
preview
プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発

プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発

オブジェクト指向プログラミングのパラダイムとMQL5コードへの応用について学びます。この第2回目の記事では、オブジェクト指向プログラミングの具体的な内容をより深く掘り下げ、実践的な例を通して実体験を提供します。EMA指標とローソク足価格データを使用した、手続き型プライスアクションエキスパートアドバイザー(EA)をオブジェクト指向コードに変換する方法を学びます。
preview
初心者のためのMQL5におけるファンダメンタル分析とテクニカル分析戦略の組み合わせ

初心者のためのMQL5におけるファンダメンタル分析とテクニカル分析戦略の組み合わせ

この記事では、トレンドフォローとファンダメンタル分析の原則を1つのエキスパートアドバイザー(EA)にシームレスに統合し、より強固な取引戦略を構築する方法について説明します。MQL5を活用して、誰でも簡単にカスタマイズされた取引アルゴリズムを作成できることを紹介します。
preview
DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列

DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列

時系列の操作に関するトピックのしめくくりとして、指標バッファに格納されているストレージ、検索、およびデータの並べ替えを整理します。これにより、プログラムでライブラリベースで作成される指標の値に基づいて分析をさらに実行できます。ライブラリのすべてのコレクションクラスの一般的な概念により、対応するコレクションで必要なデータを簡単に見つけることができます。それぞれ、今日作成されたクラスでも同じことが可能です。
preview
一からの取引エキスパートアドバイザーの開発(第14部):価格別出来高の追加((II)

一からの取引エキスパートアドバイザーの開発(第14部):価格別出来高の追加((II)

今日は、EAにいくつかのリソースを追加します。この興味深い記事では、情報を提示するためのいくつかの新しいアイデアと方法を提供します。同時に、プロジェクトの小さな欠陥を修正するのにも役立ちます。
preview
独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
データサイエンスと機械学習—ニューラルネットワーク(第02回):フィードフォワードNNアーキテクチャの設計

データサイエンスと機械学習—ニューラルネットワーク(第02回):フィードフォワードNNアーキテクチャの設計

フィードフォワード(予測制御)ニューラルネットワークについて説明する前に、少し説明しておくことがあって、設計もその1つです。入力、隠れ層の数、および各ネットワークのノードに対する柔軟なニューラルネットワークを構築および設計する方法を見てみましょう。
preview
ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)

分散型Q学習アルゴリズムの研究を続けます。以前の記事では、分散型の分位数Q学習アルゴリズムについて検討しました。最初のアルゴリズムでは、与えられた範囲の値の確率を訓練しました。2番目のアルゴリズムでは、特定の確率で範囲を訓練しました。それらの両方で、1つの分布のアプリオリな知識を使用し、別の分布を訓練しました。この記事では、モデルが両方の分布で訓練できるようにするアルゴリズムを検討します。
preview
ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化

この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。
preview
ニューラルネットワークが簡単に(第30部):遺伝的アルゴリズム

ニューラルネットワークが簡単に(第30部):遺伝的アルゴリズム

今日はちょっと変わった学習法を紹介したいと思います。ダーウィンの進化論からの借用と言えます。先に述べた手法よりも制御性は劣るでしょうが、非差別的なモデルの訓練が可能です。
preview
ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する

ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する

この記事では、長い訓練期間に対するGo-Exploreアルゴリズムの使用について説明します。訓練時間が長くなるにつれて、ランダムな行動選択戦略が有益なパスにつながらない可能性があるためです。
preview
MQL5の圏論(第8回):モノイド

MQL5の圏論(第8回):モノイド

MQL5における圏論の実装についての連載を続けます。今回は、ルールと単位元を含むことで、圏論を他のデータ分類法と一線を画す始域(集合)としてモノイドを紹介します。
preview
MQL5で日次ドローダウンリミッターEAを作成する

MQL5で日次ドローダウンリミッターEAを作成する

この記事では、取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成方法を、詳細な観点から解説しています。これはMQL5のシステムを自動化し、デイリードローダウンをコントロールするのに役立ちます。
preview
MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)

この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。
preview
MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

MQL5での取引戦略の自動化(第14回):MACD-RSI統計手法を用いた取引レイヤリング戦略

この記事では、MACDおよびRSIインジケーターと統計的手法を組み合わせた取引レイヤリング戦略を紹介します。このアプローチは、MQL5による自動売買において、ポジションを動的にスケーリングすることを目的としています。カスケード構造による戦略のアーキテクチャを解説し、主要なコードセグメントを通じて実装方法を詳述します。さらに、パフォーマンスを最適化するためのバックテスト手順についても案内します。最後に、この戦略が持つ可能性と、今後の自動売買戦略への発展性について考察します。
preview
MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする

MQL5経済指標カレンダーを使った取引(第1回):MQL5経済指標カレンダーの機能をマスターする

この記事では、まず、MQL5経済指標カレンダーの基本機能を理解し、それを取引に活用する方法を探ります。次に、MQL5で経済指標カレンダーの主要機能を実装し、取引の判断に役立つニュースを取得する方法を説明します。最後に、この情報を活用して取引戦略を効果的に強化する方法を紹介します。
preview
ニューラルネットワークが簡単に(第62回):階層モデルにおけるDecision Transformerの使用

ニューラルネットワークが簡単に(第62回):階層モデルにおけるDecision Transformerの使用

最近の記事で、Decision Transformerを使用するためのいくつかの選択肢を見てきました。この方法では、現在の状態だけでなく、以前の状態の軌跡や、その中でおこなわれた行動も分析することができます。この記事では、階層モデルにおけるこの方法の使用に焦点を当てます。
preview
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト

本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
preview
ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築

転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。
preview
Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成

この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。
preview
ニューラルネットワークが簡単に(第65回):Distance Weighted Supervised Learning (DWSL)

ニューラルネットワークが簡単に(第65回):Distance Weighted Supervised Learning (DWSL)

この記事では、教師あり学習法と強化学習法の交差点で構築された興味深いアルゴリズムに触れます。
preview
知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator

知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator

Awesome Oscillatorは、モメンタム(勢い)を測定するために使用されるビル・ウィリアムズのインジケーターの一つです。複数のシグナルを生成できるため、以前の記事と同様に、MQL5ウィザードクラスとアセンブリを活用して、パターンベースでこれらを確認します。
preview
ニューラルネットワークが簡単に(第25部):転移学習の実践

ニューラルネットワークが簡単に(第25部):転移学習の実践

前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。
preview
ソフトウェア開発とMQL5におけるデザインパターン(第2回):構造パターン

ソフトウェア開発とMQL5におけるデザインパターン(第2回):構造パターン

この記事では、MQL5だけでなく他のプログラミング言語でも拡張可能で信頼性の高いアプリケーションを開発するために、デザインパターンのトピックが開発者としてどれほど重要であるかを学んだ後、当トピックについての記事を続けます。デザインパターンのもう1つのタイプである構造デザインパターンについて学び、クラスにあるものを使ってより大きな構造を形成することによってシステムをデザインする方法を学びます。
preview
知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引

知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引

ウィザードを介してEAが組み立てられた場合、デフォルトでは複数の通貨をまたいだ取引は利用できません。トレーダーが一度に複数の銘柄から自分のアイデアをテストする際に、2つの可能なトリックを検討します。
DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム

DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム

本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。
preview
知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト

バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。
preview
ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)

ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)

強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。