MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第6回):互いのラインを交差する2つのRSI指標
この記事の多通貨EAは、クロスラインを持つ2つのRSI指標、低速RSIと交差する高速RSIを使用するEA(自動売買ロボット)です。
プロのプログラマーからのヒント(第2部): パラメータの保存とエキスパートアドバイザー、スクリプト、外部プログラム間での交換
プログラミングを容易にする方法、テクニック、および補助ツールに関するプロのプログラマーからのヒントです。ターミナルの再起動(シャットダウン)後に復元できるパラメータについて説明します。すべての例は、私のCaymanプロジェクトからの実際に機能するコードセグメントです。
MQL5での行列およびベクトル演算
行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。
一からの取引エキスパートアドバイザーの開発(第31部):未来に向かって(IV)
引き続きEAから分離した部分を取り除きます。本連載は今回で最終回です。そして、最後に取り除くのがサウンドシステムです。この連載をご覧になっていない方には、少し分かりにくいかもしれません。
グラフィカルインタフェースX: マルチラインテキストボックス内のワードラップアルゴリズム(ビルド12)
マルチラインテキストボックスの開発を続けましょう。今回の課題は、テキストがボックス幅を超えた場合には自動的にワードラップを行い、機会が生じた場合にはワードラップを取り消してテキストを前行に収めることです。
MQL5の構造体とデータ表示メソッド
この記事では、MqlDateTime、MqlTick、MqlRates、MqlBookInfoの各構造体と、それらからデータを表示するメソッドについて見ていきます。構造体のすべてのフィールドを表示するためには、標準的なArrayPrint()関数があります。この関数では、配列に含まれるデータを便利な表形式で、扱われる構造体の型とともに表示します。
あらゆるタイプのトレーリングストップを開発してEAに接続する方法
この記事では、様々なトレーリングストップを簡単に作成するためのクラスと、トレーリングストップを任意のEAに接続する方法について説明します。
ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。
自動トレーディングシステム選手権2010に向けたExpert Advisor迅速作成法
自動トレーディングシステム選手権2010に参加するためのエクスパート開発をめざし、すぐに使えるExpert Advisorテンプレートを使用します。Even novice MQL5プログラマの初心者でもこのタスクをこなすことは可能です。というのも戦略のために基本クラス、関数、テンプレートがすでに準備されているからです。よってみなさんのトレーディングの考えに合う最低限のコードを書いて実装すれば十分です。
MQL5-RPC. MQL5からのリモートプロシージャコール:ウェブサービスアクセスと、利益のためのXML-RPC ATC アナライザー
この記事は、リモートプロシージャコールを可能にするMQL5-RPCフレームワークを紹介します。XML-RPCの基礎から始め、MQL5の実装、そして、二つの実例を紹介します。最初の例は、外部のウェブサービスを使用するというもので、二つ目は、XML-RPC ATC 2011 Analyzerサービスのクライアントの例です。もし、ATC 2011からの異なる統計の実装や分析方法に興味のある場合、この記事はうってつけだと思います。
DoEasyライブラリの時系列(第39部): ライブラリに基づいた指標 - データイベントと時系列イベントの準備
本稿では、DoEasyライブラリを適用して複数の銘柄の複数期間の指標を作成する方法について説明します。指標内で機能するライブラリクラスを準備し、指標のデータソースとして使用される時系列の作成をテストします。時系列イベントの作成と送信も実装します。
ニューラルネットワークが簡単に(第36回):関係強化学習
前回の記事で説明した強化学習モデルでは、元のデータ内のさまざまなオブジェクトを識別できる畳み込みネットワークのさまざまなバリアントを使用しました。畳み込みネットワークの主な利点は、場所に関係なくオブジェクトを識別できることです。同時に、畳み込みネットワークは、オブジェクトやノイズのさまざまな変形がある場合、常にうまく機能するとは限りません。これらは、関係モデルが解決できる問題です。
自己キャッシング指標の速度比較
本稿では、MQL5指標への古典的なアクセスと、代替のMQL4形式のアクセス法を比較します。指標へのMQL4形式のアクセスについては何種類かが考慮されます。MQL5コア内の指標ハンドルも考慮して分析されます。
トレードラブ博士または いかに心配することを止め、自習 Expert Advisorを作成したか
ちょうど1年前 jooは彼の記事 "Genetic Algorithms - It's Easy!"の中で MQL5で遺伝的アルゴリズムの実装用ツールを提供してくれました。今われわれはそのツールを使用して特定の境界条件において自身のパラメータを遺伝的に最適化する Expert Advisor を作成しようとしています。
MQL5での「スネーク」ゲームの作成
本稿では『スネーク』ゲームのプログラム例を述べていきます。MQL5では、主にイベントハンドル機能によりゲームのプログラムが可能となりました。オブジェクト指向プログラミングによりこのプロセスが格段に簡素化されます。本稿では、イベント処理機能 標準的な MQL5 ライブラリクラスの使用例、また定期的関数呼び出しの詳細を学習します。
グラフィカルインタフェースX: Timeコントロール、チェックボックスコントロールのリストとテーブルのソート(ビルド6)
グラフィカルインタフェースを作成するためのライブラリの開発が続きます。今回は、チェックボックスコントロールのリストとTimeが対象となります。さらに、CTableクラスではデータを昇順または降順に並べ替えることができるようになりました。
ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。
MQL5クックブック - サービス
この記事では、チャートへの結合を必要としないMQL5プログラムである「サービス」の多彩な機能について説明しています。また、他のMQL5プログラムとのサービスの違いをハイライトし、開発者がサービスで作業する際の微妙な違いを強調しています。例として、読者にはサービスとして実装できる幅広い機能をカバーするさまざまなタスクが提供されます。
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第3部):トレンド指標
この参考記事では、トレンド指標カテゴリから標準的な指標を取り上げます。パラメータの宣言と設定、指標の初期化と解除、EAの指標バッファからのデータとシグナルの受信など、EAで指標を使用するためのすぐに使えるテンプレートを作成します。
グラフィカルインタフェース IV:情報インターフェース要素(チャプター1)
開発の現段階では、グラフィカルインタフェース作成のライブラリは、フォームとそれに取り付けることができるいくつかのコントロールを含んでいます。今後の記事の1つがマルチウィンドウモードについてになることは、以前に言及されました。そのための準備が整ったので、それは次の章で対処します。この章では、ステータスバーとツールチップ情報インタフェース要素を作成するためのクラスを作成します。
もっとも活発な MQL5.コミュニティメンバーは iPhonesを勝ち取りました!
もっともすぐれた MQL5.com 参加者に報酬を与えることを決めてからコミュニティの発展に貢献する参加者各位を決定する主要な基準を選んできました。その結果、ウェブサイトに多くの記事を掲載された以下のチャンピオンを得ました。 - investeo (11 件) 、victorg (10 件)、そして『コードベース』にプログラムを投稿され – GODZILLA (340 件)、Integer (61 件) 、 abolk (21 件)です。
MQL5クックブック:カスタムシンボルを使用したトレーディング戦略ストレステストe
この記事では、カスタムシンボルを使用したトレーディング戦略のストレステストへのアプローチを検討します。 このため、カスタムシンボルクラスを作成します。 このクラスは、サードパーティのソースからティックデータを受信するため、シンボルプロパティを変更するために使用します。 タスクの結果に基づいて、トレード条件を変更するためのオプションを検討し、その下でトレード戦略をテストします。
2013 年第一四半期 MQL5マーケット実績
設立以来、トレーディングロボットおよびテクニカルインディケータのストアである MQL5 「マーケット」はすでに580件のプロダクツを発表した250名以上の開発者を魅了してきました。2013 年第一四半期は自分のプロダクツを販売することでよい収益を上げることのできた 一部の MQL5 「マーケット」販売者にとってひじょうな成功の時期となりました。
MetaTrader用の高度なEAコンストラクター - BotBrains.app
この記事では、自動売買ロボットのためのノーコード開発プラットフォームであるBotBrains.appの機能を紹介します。自動売買ロボットを作成するために、コードを書く必要はありません。必要なブロックをスキームにドラッグアンドドロップし、パラメータを設定して、それらの間の接続を確立するだけです。
市場分析のための実践的なデーターベースの活用
データを扱うことは、現代のソフトウェアのメインの業務となっています。これは、スタンドアロン系、ネットワーク系のアプリ双方において言えることです。この問題を解決するために、特別なソフトウェアが開発されました。それは、データベース管理システム(DBMS)です。コンピューター内ストレージや、その処理においてデータを整理し、構築します。トレーディングにおいて、多くの分析はデータベースを使用しません。しかし、ソリューションがより便利になる必要のある業務があります。この記事では、クライアントサーバー、ファイルサーバー構造の両方において、データベースからデータをロードし、保存できるインジケーターの例を紹介します。
データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測
外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。
MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第2回):コントロールと応答性の追加
ダイナミックな機能でMQL5のGUIパネルを強化することで、ユーザーの取引体験を大幅に向上させることができます。インタラクティブな要素、ホバー効果、リアルタイムのデータ更新を取り入れることで、パネルは現代のトレーダーにとって強力なツールとなるでしょう。
MQL5とPythonで自己最適化EAを構築する
この記事では、市況に基づいて取引戦略を自律的に選択変更できるエキスパートアドバイザー(EA)を構築する方法について解説します。マルコフ連鎖の基本を学び、それがアルゴリズムトレードにどのように役立つかを探っていきます。
市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成
支持&抵抗戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でEAを作成し、MetaTrader 5でテストするための、価格帯行動の分析からリスク管理までのあらゆる側面に関する詳細情報が含まれます。
売買ロボット物語:余計なものがない方がいい?
2年前『最後の聖戦』でひじょうに興味深い、しかし現在広く使用されていないマーケット情報表示方法-ポイント&フィギュアチャート を再検討しました。ここで私はみなさんにポイント&フィギュアチャートで検出されるパターンに基づく売買ロボットを書いてみることを提案します。
DoEasyライブラリの時系列(第43部): 指標バッファオブジェクトクラス
この記事では、DoEasyライブラリに基づくカスタム指標プログラムを作成しながら、抽象バッファオブジェクトの子孫としての指標バッファオブジェクトクラスの開発を考察し、宣言を簡略化して指標バッファを操作します。
スペクトラム分析の構築
本稿は、MQL5言語のグラフィカルオブジェクト使用が可能なバリアントを知っていただくのが目的です。それはグラフィカルオブジェクトを使用し、シンプルなスペクトラム分析を管理するパネルの実装を行うインディケータを分析します。読者のみなさんには本稿をとおしてMQL5の基本を知っていただきたいと思います。
MQL5 エキスパートアドバイザーから、GSMモデムを使用する
現在、トレーディングのアカウントを監視する手段がたくさんあります:モバイルターミナルはICQを用い、プッシュ通知を行います。しかし、すべてインターネットの接続を必要とします。この記事は、特に呼び出しやテキストメッセージはできるが、モバイルのインターネットを使用できないような時にトレーディングターミナルの情報を取得できるようになるエキスパートアドバイザーを作成するプロセスを紹介します。
継続的なウォークフォワード最適化(その8)。プログラムの改善と修正
本連載では、ユーザーや読者の皆様からのご意見・ご要望をもとに、プログラムを修正しています。 この記事では、オートオプティマイザーの新バージョンを掲載しています。 このバージョンでは、要求された機能を実装し、他の改善点を提供しています。
MQL5取引ツールキット(第2回):ポジション管理EX5ライブラリの拡張と実装
MQL5コードやプロジェクトでEX5ライブラリをインポートして使用する方法をご紹介します。今回は、既存のライブラリにポジション管理関数を追加し、2つのエキスパートアドバイザー(EA)を作成することで、EX5ライブラリを拡張します。最初の例では、可変指数ダイナミック平均(VIDyA: Variable Index Dynamic Average)テクニカル指標を使用して、トレーリングストップ取引戦略EAを開発し、2番目の例では、取引パネルを使用して、ポジションの監視、オープン、クローズ、および修正をおこないます。この2つの例では、アップグレードされたEX5ポジション管理ライブラリの使用方法と実装方法を紹介します。
MQL5でのAutoItの使用
簡単に説明すると、この記事では、MQL5をAutoItと統合することによってMetraTrader5ターミナルのスクリプトを作成します。その中で、ターミナルのユーザーインターフェイスを操作することによってさまざまなタスクを自動化する方法を説明し、AutoItXライブラリを使用するクラスも紹介します。
データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク
前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。
高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。