エキスパートアドバイザーのQ値の開発
この記事では、エキスパートアドバイザー(EA)がストラテジーテスターで表示できる品質スコアを開発する方法を見ていきます。Van TharpとSunny Harrisという2つの有名な計算方法を見てみましょう。
データサイエンスとML(第36回):偏った金融市場への対処
金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)
最後の2つの記事は、望ましい報酬の自己回帰モデルの文脈で行動シーケンスをモデル化するDecision Transformer法に費やされました。この記事では、この方法の別の最適化アルゴリズムについて見ていきます。
MQL5での取引戦略の自動化(第4回):Multi-Level Zone Recoveryシステムの構築
この記事では、RSI(相対力指数)を活用して取引シグナルを生成する、MQL5によるMulti-Level Zone Recoveryシステムの開発について解説します。本システムでは、各シグナルインスタンスを動的に配列構造に追加し、Zone Recoveryロジックの中で複数のシグナルを同時に管理することが可能になります。このアプローチにより、スケーラブルかつ堅牢なコード設計を維持しながら、複雑な取引管理シナリオに柔軟かつ効果的に対応できる方法を紹介します。
Candlestick Trend Constraintモデルの構築(第1回):EAとテクニカル指標について
この記事は初心者とプロMQL5開発者の両方を対象としています。これは、シグナルを生成する指標をより長い時間枠のトレンドに定義し、制約するためのコードの一部を提供します。このように、トレーダーはより広い市場視点を取り入れることで戦略を強化することができ、より強固で信頼性の高い売買シグナルが得られる可能性があります。
知っておくべきMQL5ウィザードのテクニック(第26回):移動平均とハースト指数
ハースト指数は、時系列データが長期間にわたってどれだけ自己相関しているかを示す指標です。ハースト指数は、時系列データの長期的な特性を捉えることがわかっているため、経済や金融に限らず、幅広い時系列分析において重要な役割を果たします。本稿では、ハースト指数を移動平均線と組み合わせることで、トレーダーにとって有用なシグナルをどのように得られるかを検討し、その潜在的なメリットに焦点を当てます。
MQL5での取引戦略の自動化(第16回):ミッドナイトレンジブレイクアウト+Break of Structure (BoS)のプライスアクション
本記事では、MQL5を用いて「ミッドナイトレンジブレイクアウト + Break of Structure (BoS)」戦略を自動化し、ブレイクアウトの検出および取引実行のコードを詳細に解説します。エントリー、ストップ、利益確定のためのリスクパラメータを正確に定義し、実際の取引に活用できるようバックテストおよび最適化もおこないます。
一からの取引エキスパートアドバイザーの開発(第28部):未来に向かって(III)
私たちの発注システムが対応できていないタスクがまだ1つありますが、最終的に解決する予定です。MetaTrader 5は、注文値の作成と修正を可能にするチケットのシステムを備えています。アイデアは、同じチケットシステムをより高速かつ効率的にするエキスパートアドバイザー(EA)を持つことです。
アルゴリズム取引のリスクマネージャー
本稿の目的は、リスクマネージャーを利用する必要性を証明し、アルゴリズム取引におけるリスク管理の原則を別クラスで実践することで、金融市場におけるデイ取引と投資におけるリスク標準化アプローチの有効性を誰もが検証できるようにすることです。この記事では、アルゴリズム取引用のリスクマネージャークラスを作成します。これは、手動取引のリスクマネージャーの作成について述べた前回の記事の論理的な続きです。
知っておくべきMQL5ウィザードのテクニック(第19回):ベイズ推定
ベイズ推定とは、新しい情報が入手可能になったときに確率仮説を更新するためにベイズの定理を採用することです。これは直感的に時系列分析への適応につながるので、シグナルだけでなく、資金管理やトレーリングストップのためのカスタムクラスを構築する際に、これをどのように利用できるか見てみましょう。
ニューラルネットワークが簡単に(第59回):コントロールの二分法(DoC)
前回の記事では、Decision Transformerを紹介しました。しかし、外国為替市場の複雑な確率的環境は、提示した手法の可能性を完全に実現することを許しませんでした。今回は、確率的環境におけるアルゴリズムの性能向上を目的としたアルゴリズムを紹介します。
知っておくべきMQL5ウィザードのテクニック(第53回):MFI (Market Facilitation Index)
MFI(Market Facilitation Index、マーケットファシリテーションインデックス)は、ビル・ウィリアムズによる指標の一つで、出来高と連動した価格変動の効率性を測定することを目的としています。いつものように、本記事では、ウィザードアセンブリシグナルクラスの枠組みにおいて、このインジケーターのさまざまなパターンを検証し、それに基づいたテストレポートおよび分析結果を紹介します。
Bears Powerによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bears Power(ベアーパワー)テクニカル指標によって取引システムを設計する方法を学びます。
知っておくべきMQL5ウィザードのテクニック(第13回):ExpertSignalクラスのためのDBSCAN
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)は、データをグループ化する教師なし形式であり、入力パラメータをほとんど必要としません。入力パラメータは2つだけであり、K平均法などの他のアプローチと比較すると利点が得られます。ウィザードで組み立てたEAを使用してテストし、最終的に取引するために、これがどのように建設的であり得るかを掘り下げます。
MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム
この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。
ニューラルネットワークが簡単に(第55回):対照的内発制御(Contrastive intrinsic control、CIC)
対照訓練は、教師なしで表現を訓練する方法です。その目標は、データセットの類似点と相違点を強調するためにモデルを訓練することです。この記事では、対照訓練アプローチを使用してさまざまなActorスキルを探究する方法について説明します。
MetaTraderのMultibot(第2回):動的テンプレートの改良
前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
MQL5での取引戦略の自動化(第13回):三尊天井取引アルゴリズムの構築
この記事では、三尊天井(Head and Shoulders)パターンの検出と売買をMQL5で自動化します。その構造を分析し、検出および取引をおこなうエキスパートアドバイザー(EA)を実装し、バックテストでその結果を検証します。このプロセスを通じて、改良の余地を残しつつも実用的な取引アルゴリズムが明らかになります。
MQL5の圏論(第4回):スパン、実験、合成
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
MQL5における修正グリッドヘッジEA(第3部):シンプルヘッジ戦略の最適化(I)
この第3部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルヘッジEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
因果推論における傾向スコア
本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。
知っておくべきMQL5ウィザードのテクニック(第32回):正則化
正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。
多通貨エキスパートアドバイザーの開発(第19回):Pythonで実装されたステージの作成
これまでは、標準のストラテジーテスター内で最適化タスクを順に自動実行することだけを考えてきました。しかし、もしそれらの実行の合間に、別の手段で得られたデータを処理したいとしたらどうなるでしょうか。ここでは、Pythonで記述されたプログラムによって新たな最適化ステージを作成する機能の追加を試みます。
多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化
取引戦略を最適化した後、パラメータのセットを受け取ります。これらを使用して、1つのEAに複数の取引戦略のインスタンスを作成することができます。以前は手動でおこないましたが、ここでは、このプロセスの自動化を試みます。
独自のLLMをEAに統合する(第5部):LLMによる取引戦略の開発とテスト(IV) - 取引戦略のテスト
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習
モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加
この記事では、MQL5経済カレンダーダッシュボードにフィルターを実装し、通貨、重要度、時間ごとにニュースイベントの表示を絞り込みます。まず、各カテゴリのフィルター基準を設定し、それをダッシュボードに組み込むことで、関連するイベントのみが表示されるようにします。最後に、各フィルターが動的に更新され、トレーダーにとって必要な、焦点を絞ったリアルタイムの経済情報が提供されるようにします。
多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)
良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(II)
エキスパートアドバイザー(EA)に統合できる戦略の数は、事実上無限と言えます。しかし、戦略を追加するたびにアルゴリズムの複雑さが増していきます。複数の戦略を組み込むことで、EAは多様な市場環境により柔軟に適応し、収益性を向上させる可能性が高まります。本日は、Trend Constraint EAの機能をさらに強化するための取り組みとして、リチャード・ドンチャンが開発した著名な戦略のひとつを対象に、MQL5を活用する方法をご紹介します。
MQL5での取引戦略の自動化(第10回):トレンドフラットモメンタム戦略の開発
この記事では、「トレンドフラットモメンタム(Trend Flat Momentum)戦略」のためのエキスパートアドバイザー(EA)をMQL5で開発します。移動平均線のクロスオーバーに、RSI(相対力指数)とCCI(商品チャネル指数)といったモメンタム系のフィルターを組み合わせて、トレードシグナルを生成します。また、バックテストの方法や、実運用でのパフォーマンス向上のための改善案についても取り上げます。
制約付きCustom Maxを実装するための一般的な最適化定式化(GOF)
この記事では、MetaTrader 5端末の設定タブでCustom Maxを選択する際に、複数の目的と制約条件を持つ最適化問題を実装する方法を紹介します。最適化問題の例は、ドローダウンが10%未満、連敗回数が5回未満、1週間の取引回数が5回以上となるように、プロフィットファクター、ネットプロフィット、リカバリーファクターを最大化するといったものです。
知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)
パラボリックSAR (Stop-and-Reversal)は、トレンドの確認と終了点を示す指標です。トレンドの見極めが遅れるため、その主な目的は、ポジションのトレーリングストップロスを位置づけることです。ウィザードで組み立てられるエキスパートアドバイザー(EA)のカスタムシグナルクラスを活用して、本当にEAのシグナルとして使えるかどうか調べてみました。
機械学習の限界を克服する(第1回):相互運用可能な指標の欠如
私たちのコミュニティがAIをあらゆる形態で活用した信頼性の高い取引戦略を構築しようとする努力を、静かに蝕んでいる強力で広範な力があります。本稿では、私たちが直面している問題の一部は、「ベストプラクティス」に盲目的に従うことに根ざしていることを明らかにします。読者に対して、実際の市場に基づくシンプルな証拠を提供することで、なぜそのような行動を避け、むしろドメイン固有のベストプラクティスを採用すべきかを論理的に示します。これによって、私たちのコミュニティがAIの潜在的な可能性を回復するチャンスを少しでも持てるようになるのです。
MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成
本記事では、Envelopes Trend取引戦略と統合されたZone Recoveryシステムを開発します。RSI (Relative Strength Index)とEnvelopesインジケーターを用いて取引を自動化し、損失を抑えるリカバリーゾーンを効果的に管理するためのアーキテクチャを詳述します。実装とバックテストを通じて、変動する市場環境に対応できる効果的な自動取引システムの構築方法を示します。
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)
前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
リプレイシステムの開発(第31回):エキスパートアドバイザープロジェクト - C_Mouseクラス(V)
リプレイ/シミュレーションの終了まで残り時間を表示できるタイマーが必要です。これは一見、シンプルで迅速な解決策に見えるかもしれません。多くの人は、取引サーバーが使用しているのと同じシステムを適応して使用しようとするだけです。しかし、この解決策を考えるとき、多くの人が考慮しないことがあります。リプレイでは、そしてシミュレーションではなおさら、時計の動きは異なるということです。こうしたことが、このようなシステムの構築を複雑にしています。
知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題
関数同定問題は、研究対象のデータセットをマッピングする基本モデルがどのようなものであるかについて、最小限の仮定から始める回帰の形式です。ベイズ法やニューラルネットワークでも実装可能ですが、ここでは遺伝的アルゴリズムによる実装が、MQL5ウィザードで使用可能なExpertSignalクラスのカスタマイズにどのように役立つかを見ていきます。
ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減
Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。
MQL5における組合せ対称交差検証法
この記事では、ストラテジーテスターの低速&完全アルゴリズムを使用してストラテジーを最適化した後に過剰学習が発生する可能性の程度を測定するために、純粋なMQL5における組合せ対称交差検証法の実装を紹介します。