MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
取引におけるニューラルネットワーク:状態空間モデル

取引におけるニューラルネットワーク:状態空間モデル

これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
preview
MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加

MQL5経済指標カレンダーを使った取引(第3回):通貨、重要度、時間フィルターの追加

この記事では、MQL5経済カレンダーダッシュボードにフィルターを実装し、通貨、重要度、時間ごとにニュースイベントの表示を絞り込みます。まず、各カテゴリのフィルター基準を設定し、それをダッシュボードに組み込むことで、関連するイベントのみが表示されるようにします。最後に、各フィルターが動的に更新され、トレーダーにとって必要な、焦点を絞ったリアルタイムの経済情報が提供されるようにします。
preview
ニューラルネットワークが簡単に(第85回):多変量時系列予測

ニューラルネットワークが簡単に(第85回):多変量時系列予測

この記事では、線形モデルとTransformerの長所を調和的に組み合わせた、新しい複雑な時系列予測手法を紹介します。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

知っておくべきMQL5ウィザードのテクニック(第45回):モンテカルロ法による強化学習

モンテカルロは、ウィザードで組み立てられたエキスパートアドバイザー(EA)における実装を検討するために取り上げる、強化学習の4つ目の異なるアルゴリズムです。ランダムサンプリングに基づいていますが、多様なシミュレーション手法を活用できる点が特徴です。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
古典的な戦略を再構築する(第6回):多時間枠分析

古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
preview
知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

知っておくべきMQL5ウィザードのテクニック(第33回):ガウス過程カーネル

ガウス過程カーネルは正規分布の共分散関数であり、予測において役割を果たす可能性があります。MQL5のカスタムシグナルクラスで、このユニークなアルゴリズムを探求し、プライムエントリシグナルやエグジットシグナルとして活用できるかを検証しました。
preview
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数

カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
preview
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
preview
ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
preview
多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。
preview
ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)

ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)

これまで検討してきたすべてのモデルは、環境の状態を時系列として分析します。ただし、時系列は周波数特徴の形式で表現することもできます。この記事では、時系列の周波数成分を使用して将来の状態を予測するアルゴリズムを紹介します。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
preview
多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存

多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
preview
ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)

ニューラルネットワークが簡単に(第91回):周波数領域予測(FreDF)

周波数領域における時系列の分析と予測を継続的に探求していきます。この記事では、これまでに学習した多くのアルゴリズムに追加できる、周波数領域でデータを予測する新しい方法について説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

DQN (Deep-Q-Network)は強化学習アルゴリズムであり、機械学習モジュールの学習プロセスにおいて、次のQ値と理想的な行動を予測する際にニューラルネットワークを関与させます。別の強化学習アルゴリズムであるQ学習についてはすでに検討しました。そこでこの記事では、強化学習で訓練されたMLPが、カスタムシグナルクラス内でどのように使用できるかを示すもう1つの例を紹介します。
preview
ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

ニューラルネットワークが簡単に(第80回):Graph Transformer Generative Adversarial Model (GTGAN)

この記事では、2024年1月に導入された、グラフ制約のある建築レイアウト生成の複雑な問題を解くためのGTGAN (Graph Transformer Generative Adversarial Model)アルゴリズムについて知ろうと思います。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加

MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加

この記事では、インタラクティブなインラインボタンをMQL5エキスパートアドバイザー(EA)に統合し、Telegram経由でリアルタイムにコントロールできるようにします。各ボタンを押すたびに特定のアクションがトリガーされ、ユーザーにレスポンスが返されます。また、Telegramメッセージやコールバッククエリを効率的に処理するための関数もモジュール化します。
preview
古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

古典的な戦略を再構築する(第5回):USDZARの多銘柄分析

この連載では、古典的な戦略を再検討し、AIを使って戦略を改善できるかどうかを検証します。今日の記事では、複数の相関する証券をまとめて分析するという一般的な戦略について検討し、エキゾチックな通貨ペアであるUSDZAR(米ドル/南アフリカランド)に焦点を当てます。
preview
MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発

MQL5取引ツールキット(第3回):未決注文管理EX5ライブラリの開発

MQL5のコードやプロジェクトで、包括的な未決注文管理EX5ライブラリを開発して実装する方法を学びましょう。本記事では、広範な未決注文管理EX5ライブラリを作成する手順を紹介し、それをインポートおよび実装する方法を、取引パネルまたはグラフィカルユーザーインターフェース(GUI)の構築を通じて解説します。このEA注文パネルを使用すれば、チャートウィンドウ上のGUIから、指定されたマジックナンバーに関連する未決注文を直接オープン、監視、削除することが可能です。
preview
Connexusのリクエスト(第6回):HTTPリクエストとレスポンスの作成

Connexusのリクエスト(第6回):HTTPリクエストとレスポンスの作成

Connexusライブラリ連載第6回目では、HTTPリクエストの構成要素全体に焦点を当て、リクエストを構成する各コンポーネントを取り上げます。そして、リクエスト全体を表現するクラスを作成し、これまでに作成したクラスを統合します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

この記事では、チャートのスクリーンショットを画像データとしてエンコードし、HTTPリクエストを通じてTelegramチャットに送信するMQL5のエキスパートアドバイザー(EA)を作成します。この画像のエンコードと送信の統合によって、既存のMQL5-Telegramシステムが強化され、Telegram上で直接視覚的な取引洞察を提供できるようになります。
preview
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
preview
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
preview
ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測

ニューラルネットワークが簡単に(第92回):周波数および時間領域における適応的予測

FreDF法の著者は、周波数領域と時間領域を組み合わせた予測の利点を実験的に確認しました。しかし、重みハイパーパラメータの使用は、非定常時系列には最適ではありません。この記事では、周波数領域と時間領域における予測の適応的組み合わせの方法について学びます。
preview
知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰

サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。
preview
MQL5で取引管理者パネルを作成する(第2回):応答性と迅速なメッセージングの強化

MQL5で取引管理者パネルを作成する(第2回):応答性と迅速なメッセージングの強化

この記事では、以前作成した管理パネルの応答性を強化します。さらに、取引シグナルの文脈におけるクイックメッセージングの重要性についても検討します。
preview
HTTPとConnexus(第2回):HTTPアーキテクチャとライブラリ設計の理解

HTTPとConnexus(第2回):HTTPアーキテクチャとライブラリ設計の理解

この記事では、HTTPプロトコルの基礎について、主なメソッド(GET、POST、PUT、DELETE)、ステータスコード、URLの構造について説明します。さらに、HTTPリクエストにおけるURLとクエリパラメータの操作を容易にするCQueryParamとCURLクラスによるConexxusライブラリの構築の始まりも紹介します。
preview
取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

取引におけるニューラルネットワーク:時系列予測のための言語モデルの使用

時系列予測モデルの研究を続けます。本記事では、事前訓練済みの言語モデルを活用した複雑なアルゴリズムについて説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み

制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。
preview
ニュース取引が簡単に(第4回):パフォーマンス向上

ニュース取引が簡単に(第4回):パフォーマンス向上

この記事では、ストラテジーテスターでエキスパートアドバイザー(EA)のランタイムを改善する方法について掘り下げていきます。これらのニュースイベントの時間は、指定された時間内にアクセスされます。これにより、EAはボラティリティの高い環境でも低い環境でも、イベントドリブン取引を効率的に管理できます。
preview
多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

多通貨エキスパートアドバイザーの開発(第15回):実際の取引のためのEAの準備

既製のエキスパートアドバイザー(EA)の完成に徐々に近づくにつれ、取引戦略のテスト段階では二次的に思える問題にも注意を払う必要があります。これらの問題は、実際の取引に移行する際に重要となります。
preview
取引におけるニューラルネットワーク:時系列予測のための軽量モデル

取引におけるニューラルネットワーク:時系列予測のための軽量モデル

軽量な時系列予測モデルは、最小限のパラメータ数で高いパフォーマンスを実現します。これにより、コンピューティングリソースの消費を抑えつつ、意思決定の迅速化が可能となります。こうしたモデルは軽量でありながら、より複雑なモデルと同等の予測精度を達成できます。
preview
MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。
preview
Connexusにおけるヘッダ(第3部):リクエスト用HTTPヘッダの使い方をマスターする

Connexusにおけるヘッダ(第3部):リクエスト用HTTPヘッダの使い方をマスターする

Connexusライブラリの開発を続けます。この章では、HTTPプロトコルにおけるヘッダの概念を探求し、ヘッダとは何か、何のためにあるのか、リクエストでどのように使うのかを説明します。APIとの通信で使用される主なヘッダを取り上げ、ライブラリでの設定方法の実践例を紹介します。
preview
取引におけるニューラルネットワーク:点群の階層的特徴量学習

取引におけるニューラルネットワーク:点群の階層的特徴量学習

点群から特徴量を抽出するアルゴリズムの研究を続けます。この記事では、PointNet手法の効率を高めるメカニズムについて解説します。
preview
多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

多通貨エキスパートアドバイザーの開発(第16回):異なるクォート履歴がテスト結果に与える影響

開発中のエキスパートアドバイザー(EA)は、さまざまなブローカーとの取引で良好な結果を示すことが期待されていますが、現時点では、MetaQuotesデモ口座からのクォートを使用してテストを実行しています。テストや最適化に使用したクォートとは異なる価格データを持つ取引口座でも、EAが正しく機能する準備が整っているのかを確認してみましょう。