MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
データサイエンスと機械学習(第03回):行列回帰

データサイエンスと機械学習(第03回):行列回帰

今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。
preview
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。
preview
ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン

ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン

この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。
preview
ニューラルネットワークが簡単に(第14部):データクラスタリング

ニューラルネットワークが簡単に(第14部):データクラスタリング

前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。
preview
オーサムオシレーター(Awesome Oscillator)による取引システムの設計方法を学ぶ

オーサムオシレーター(Awesome Oscillator)による取引システムの設計方法を学ぶ

連載の今回の新しい記事では、私たちの取引に役立ちそうな新しいテクニカルツールについてご紹介します。これは、オーサムオシレーター(Awesome Oscillator、AO)という指標です。この指標を使用した取引システムの設計方法を学びます。
preview
独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入

独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
スマートマネーコンセプト(オーダーブロック)とフィボナッチ指標を組み合わせた最適な取引エントリー方法

スマートマネーコンセプト(オーダーブロック)とフィボナッチ指標を組み合わせた最適な取引エントリー方法

SMC(オーダーブロック)は、機関投資家トレーダーが大規模なな売買を開始する主要領域です。価格が大きく動いた後、フィボナッチは直近のスイングハイからスイングローへの潜在的なリトレースメントを特定し、最適な取引エントリーを特定するのに役立ちます。
preview
ケルトナーチャネル取引システムの構築とテスト

ケルトナーチャネル取引システムの構築とテスト

この記事では、金融市場において非常に重要な概念であるボラティリティを利用した取引システムを紹介します。ケルトナーチャネル指標を理解し、それをどのようにコードし、どのように簡単な取引戦略に基づいて取引システムを作成し、様々な資産でテストすることができるかを理解した上で、ケルトナーチャネル指標に基づく取引システムを提供します。
preview
予測による統計的裁定取引

予測による統計的裁定取引

統計的裁定取引について調べ、共和分で相関する銘柄をPythonで検索し、ピアソン係数の指標を作成し、PythonとONNX モデルで予測をおこなって統計的裁定取引を行うEAを作成します。
preview
データサイエンスと機械学習(第08回)::簡単なMQL5でのK平均法

データサイエンスと機械学習(第08回)::簡単なMQL5でのK平均法

データサイエンティストやトレーダーにとってデータマイニングは非常に重要です。多くの場合、データは私たちが思っているほど単純ではありません。人間の目は、データセット内のささいな基本パターンと関係を理解できません。k平均法アルゴリズムがその助けになるかもしれません。調べてみましょう...
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上

本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
preview
チャイキンオシレーター(Chaikin Oscillator)による取引システムの設計方法を学ぶ

チャイキンオシレーター(Chaikin Oscillator)による取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事にようこそ。この新しい記事を通して、チャイキンオシレーター指標による取引システムを設計する方法を学びます。
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
preview
アリゲーターによる取引システムの設計方法を学ぶ

アリゲーターによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する方法についての連載は今回で完結します。アリゲーター指標を基にした取引システムの作り方を学びます。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました

数人のトレーダー仲間から、プレフィックスやサフィックスを持つ銘柄名を持つブローカーでこの多通貨EAを使用する方法、およびこの多通貨EAで取引タイムゾーンや取引タイムセッションを実装する方法についてメールやコメントをいただきました。
preview
一からの取引エキスパートアドバイザーの開発(第8部):概念的な飛躍

一からの取引エキスパートアドバイザーの開発(第8部):概念的な飛躍

新しい機能を実装する最も簡単な方法は何でしょうか。この記事では、1歩後退してから2歩前進します。
preview
Bulls Powerによる取引システムの設計方法を学ぶ

Bulls Powerによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。
preview
ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成

ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成

この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。
モメンタムによるトレーディングシステムの設計方法を学ぶ
モメンタムによるトレーディングシステムの設計方法を学ぶ

モメンタムによるトレーディングシステムの設計方法を学ぶ

前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。
preview
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
preview
Rebuyのアルゴリズム:効率を上げるための数学モデル

Rebuyのアルゴリズム:効率を上げるための数学モデル

この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。
preview
ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ

ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ

人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶ本連載の新しい記事では、ゲータ―オシレーターテクニカル指標を取り上げ、簡単な戦略を通じて取引システムを作成する方法について学びます。
preview
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
preview
モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引

モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引

この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。
preview
ニューラルネットワークが簡単に(第32部):分散型Q学習

ニューラルネットワークが簡単に(第32部):分散型Q学習

この連載で前回Q学習法を紹介しました。この手法は、各行動の報酬を平均化するものです。2017年には、報酬分布関数を研究する際に、より大きな成果を示す2つの研究が発表されました。そのような技術を使って、私たちの問題を解決する可能性を考えてみましょう。
preview
MQL5におけるARIMAモデルによる予測

MQL5におけるARIMAモデルによる予測

この記事では、ARIMAモデルを構築するためのCArimaクラスの開発を継続し、予測を可能にする直感的な手法を追加します。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。
preview
一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。
preview
アルーン(Aroon)取引システムの構築とテスト

アルーン(Aroon)取引システムの構築とテスト

この記事では、指標の基本を学んだ後、どのようにアルーンの取引システムを構築できるかを学び、アルーンの指標に基づいた取引システムを構築するために必要なステップを紹介します。この取引システムを構築した後、利益が出るのかさらに最適化が必要なのかをテストします。
preview
ニューラルネットワークが簡単に(第33部):分散型Q学習における分位点回帰

ニューラルネットワークが簡単に(第33部):分散型Q学習における分位点回帰

分散型Q学習の研究を続けます。今日は、この方法を反対側から見てみましょう。価格予測問題を解決するために、分位点回帰を利用する可能性を検討します。
preview
MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)

MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)

MQL5で動かせるGUIを作成するための包括的なガイドで、取引戦略やユーティリティでのダイナミックなデータ表現の力を解き放ちましょう。チャートイベントのコアコンセプトに触れ、同じチャート上にシンプルで複数の移動可能なGUIをデザインし、実装する方法を学びます。この記事では、GUIに要素を追加し、機能性と美しさを向上させるプロセスについても説明します。
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト

DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト

本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。
preview
MQL5でゾーン回復マーチンゲール戦略を開発する

MQL5でゾーン回復マーチンゲール戦略を開発する

この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
preview
知っておくべきMQL5ウィザードのテクニック(第39回):RSI (Relative Strength Index)

知っておくべきMQL5ウィザードのテクニック(第39回):RSI (Relative Strength Index)

RSIは、モメンタムオシレーターとして人気があり、最近の価格変動のペースと大きさを測定し、証券価格の過大評価と過小評価の状況を評価します。スピードと大きさに関するこれらの洞察は、反転ポイントを定義する上で鍵となります。このオシレーターを別のカスタムシグナルクラスで動作させ、そのシグナルの特徴を調べてみましょう。まず、ボリンジャーバンドについてのまとめから始めます。
preview
MQL5オブジェクト指向プログラミング(OOP)について

MQL5オブジェクト指向プログラミング(OOP)について

開発者として、私たちは、特に異なる動作をするオブジェクトがある場合に、コードを重複せずに再利用可能で柔軟なソフトウェアを作成し開発する方法を学ぶ必要があります。これは、オブジェクト指向プログラミングのテクニックと原則を使うことでスムーズにおこなうことができます。この記事では、MQL5オブジェクト指向プログラミングの基本を紹介し、この重要なトピックの原則とプラクティスをソフトウェアでどのように使用できるかを説明します。
preview
取引におけるニューラルネットワーク:時系列の区分線形表現

取引におけるニューラルネットワーク:時系列の区分線形表現

本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。
preview
自動で動くEAを作る(第12回):自動化(IV)

自動で動くEAを作る(第12回):自動化(IV)

自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
preview
ニューラルネットワークが簡単に(第58回):Decision Transformer (DT)

ニューラルネットワークが簡単に(第58回):Decision Transformer (DT)

強化学習の手法を引き続き検討します。この記事では、一連の行動を構築するパラダイムでエージェントの方策を考慮する、少し異なるアルゴリズムに焦点を当てます。
preview
知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標

ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。
preview
ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム

ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム

本連載のこれまでの記事で、2つの強化学習アルゴリズムを見てきました。それぞれに長所と短所があります。このような場合ではよくあることですが、次に、2つの方法の良いところを組み合わせてアルゴリズムにすることが考え出されます。そうすれば、それぞれの欠点が補われることになります。今回は、そのような手法の1つを紹介します。