MQL5言語での自動売買ロボットのプログラミングと使用に関する記事

icon

MetaTraderプラットフォームのために作られたExpert Advisorsは、開発者により導入された様々な機能を実行します。自動売買ロボットは1日24時間、通貨をトラックし、取引をコピーし、レポートを送信し、ニュースを分析し、 特別に作成されたグラフィカルインターフェイスを提供することができます。

記事はプログラミングのテクニック、データ処理のための数学的なアイデア、自動売買ロボットの開発と発注についてのヒントを記載します。

新しい記事を追加
最新 | ベスト
preview
ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化

ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化

時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。
preview
機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング

機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました

数人のトレーダー仲間から、プレフィックスやサフィックスを持つ銘柄名を持つブローカーでこの多通貨EAを使用する方法、およびこの多通貨EAで取引タイムゾーンや取引タイムセッションを実装する方法についてメールやコメントをいただきました。
リニアなトレーディングシステムを指数に高める
リニアなトレーディングシステムを指数に高める

リニアなトレーディングシステムを指数に高める

本稿では MQL5 プログラマーの中級者にリニアなトレーディングシステム(固定ロット)からいわゆる指数の技術を簡単に実装することでより収益を上げる方法をお伝えします。これは結果として生じる資金曲線の成長が幾何学的または指数関数で放物線の形を取ります。特にラルフ・ビンス氏によって開発された実用的な「固定比率」のポジションサイジングの MQL5 のバリアントを実装します。
preview
データサイエンスと機械学習(第03回):行列回帰

データサイエンスと機械学習(第03回):行列回帰

今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。
preview
ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ

ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ

人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶ本連載の新しい記事では、ゲータ―オシレーターテクニカル指標を取り上げ、簡単な戦略を通じて取引システムを作成する方法について学びます。
preview
ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習

モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。
preview
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法

MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法

MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成しましょう。HTTP POST経由で取引データを同期し、HTTPリクエストを使用して取得する方法を学習します。最終的には、取引を効果的かつ効率的に追跡するのに役立つ取引ジャーナルが手に入ります。
preview
ケルトナーチャネル取引システムの構築とテスト

ケルトナーチャネル取引システムの構築とテスト

この記事では、金融市場において非常に重要な概念であるボラティリティを利用した取引システムを紹介します。ケルトナーチャネル指標を理解し、それをどのようにコードし、どのように簡単な取引戦略に基づいて取引システムを作成し、様々な資産でテストすることができるかを理解した上で、ケルトナーチャネル指標に基づく取引システムを提供します。
preview
MQL5の統合:Python

MQL5の統合:Python

Pythonは、特に金融、データサイエンス、人工知能、機械学習の分野で多くの特徴を持つ、よく知られた人気のプログラミング言語です。また、Pythonは取引にも有効な強力なツールです。MQL5では、この強力な言語を統合して使用することで、目的を効果的に達成することができます。本記事では、Pythonの基本的な情報を学んだ後、MQL5でPythonを統合して使用する方法を紹介します。
preview
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)

前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。
preview
ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成

ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成

この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。
preview
ニューラルネットワークが簡単に(第18部):アソシエーションルール

ニューラルネットワークが簡単に(第18部):アソシエーションルール

この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。
preview
MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)

RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。
DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス

DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス

本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。
preview
自動で動くEAを作る(第15回):自動化(VII)

自動で動くEAを作る(第15回):自動化(VII)

自動化に関するこの連載を完結させるために、前回に引き続きトピックについて説明しましょう。EAを時計仕掛けのように動かすために、すべてがどのように組み合わされるかを見ていきます。
preview
独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入

独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
preview
ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)

ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)

前回は、アテンションメカニズムをアーキテクチャーに用いたリレーショナルモデルについて説明しました。これらのモデルの特徴の1つは、コンピューティングリソースを集中的に利用することです。今回は、セルフアテンションブロック内部の演算回数を減らす仕組みの1つについて考えてみたいと思います。これにより、モデルの一般的なパフォーマンスが向上します。
preview
MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド

ボリンジャーバンド売買戦略に基づくMQL5での自動売買アルゴリズム実装のためのステップごとのガイドです。トレーダーに役立つEAの作成に基づく詳細なチュートリアルです。
Expert Advisor動作中のバランス曲線勾配調整
Expert Advisor動作中のバランス曲線勾配調整

Expert Advisor動作中のバランス曲線勾配調整

トレードシステムのルールを見つけ、それをExpert Advisorにプログラムするのが仕事の半分です。Expert Advisorはトレーディング結果を集積するので、いくらかの処理を修正する必要があります。本項では、バランス曲線の勾配測定のフィードバックを作成することで、Expert Advisorのパフォーマンスを向上させる方法の一つについて述べます。
preview
アリゲーターによる取引システムの設計方法を学ぶ

アリゲーターによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標に基づいて取引システムを設計する方法についての連載は今回で完結します。アリゲーター指標を基にした取引システムの作り方を学びます。
preview
ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン

ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン

この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。
preview
MQL5でゾーン回復マーチンゲール戦略を開発する

MQL5でゾーン回復マーチンゲール戦略を開発する

この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス

本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
トレーダーは開発者によるサービスを必要とするのでしょうか?
トレーダーは開発者によるサービスを必要とするのでしょうか?

トレーダーは開発者によるサービスを必要とするのでしょうか?

アルゴリズムによるトレードが人気になり求められ、珍しいアルゴリズムや変わった作業への需要につながりました。ある程度、そのような複雑なアプリケーションは、Code BaseやMarketにて取得できます。トレーダーは、これらのアプリケーションに数クリックでアクセスできますが、これらは完全に彼らの要求を満たすことができないこともあります。その場合、トレーダーは、MQL5 Freelanceセクションにて望ましいアプリケーションを作成できる開発者を探し、注文を行います。
preview
取引におけるトレーリングストップ

取引におけるトレーリングストップ

この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
preview
ニューラルネットワークが簡単に(第14部):データクラスタリング

ニューラルネットワークが簡単に(第14部):データクラスタリング

前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。
preview
MQL5入門(第5部):MQL5における配列関数の入門ガイド

MQL5入門(第5部):MQL5における配列関数の入門ガイド

全くの初心者のために作られた第5部では、MQL5配列の世界を探検してみましょう。この記事は、複雑なコーディングの概念を簡素化し、明快さと包括性に重点を置いています。質問が受け入れられ、知識が共有される、学習者のコミュニティに仲間入りしてください。
preview
ニューラルネットワークが簡単に(第46回):目標条件付き強化学習(GCRL)

ニューラルネットワークが簡単に(第46回):目標条件付き強化学習(GCRL)

今回は、もうひとつの強化学習アプローチを見てみましょう。これはGCRL(goal-conditioned reinforcement learning、目標条件付き強化学習)と呼ばれます。このアプローチでは、エージェントは特定のシナリオでさまざまな目標を達成するように訓練されます。
preview
アルーン(Aroon)取引システムの構築とテスト

アルーン(Aroon)取引システムの構築とテスト

この記事では、指標の基本を学んだ後、どのようにアルーンの取引システムを構築できるかを学び、アルーンの指標に基づいた取引システムを構築するために必要なステップを紹介します。この取引システムを構築した後、利益が出るのかさらに最適化が必要なのかをテストします。
preview
予測による統計的裁定取引

予測による統計的裁定取引

統計的裁定取引について調べ、共和分で相関する銘柄をPythonで検索し、ピアソン係数の指標を作成し、PythonとONNX モデルで予測をおこなって統計的裁定取引を行うEAを作成します。
preview
Bulls Powerによる取引システムの設計方法を学ぶ

Bulls Powerによる取引システムの設計方法を学ぶ

最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。
preview
一からの取引エキスパートアドバイザーの開発(第8部):概念的な飛躍

一からの取引エキスパートアドバイザーの開発(第8部):概念的な飛躍

新しい機能を実装する最も簡単な方法は何でしょうか。この記事では、1歩後退してから2歩前進します。
preview
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する

この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
preview
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける

複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
preview
MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)

MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)

MQL5で動かせるGUIを作成するための包括的なガイドで、取引戦略やユーティリティでのダイナミックなデータ表現の力を解き放ちましょう。チャートイベントのコアコンセプトに触れ、同じチャート上にシンプルで複数の移動可能なGUIをデザインし、実装する方法を学びます。この記事では、GUIに要素を追加し、機能性と美しさを向上させるプロセスについても説明します。
preview
データサイエンスと機械学習(第08回)::簡単なMQL5でのK平均法

データサイエンスと機械学習(第08回)::簡単なMQL5でのK平均法

データサイエンティストやトレーダーにとってデータマイニングは非常に重要です。多くの場合、データは私たちが思っているほど単純ではありません。人間の目は、データセット内のささいな基本パターンと関係を理解できません。k平均法アルゴリズムがその助けになるかもしれません。調べてみましょう...
preview
Rebuyのアルゴリズム:効率を上げるための数学モデル

Rebuyのアルゴリズム:効率を上げるための数学モデル

この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。