Artikel über die Automatisierung von Handelssystemen in MQL5

icon

Lesen Sie Artikel über Handelssysteme, in denen unterschiedlichste Ideen vorgestellt sind. Sie erfahren, wie man   statistische Methoden und Muster auf japanischen Kerzen verwendet, wie man Signale filtern kann und wofür man Semaphor-Indikatoren braucht.

Mit dem Meister MQL5 lernen Sie, wie man einen Roboter ohne Programmieren zur schnellen Überprüfung von Handelsideen erstellen kann sowie was genetische Algorithmen sind.

Neuer Artikel
letzte | beste
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

Die symbolische Regression ist eine Form der Regression, die von minimalen bis gar keinen Annahmen darüber ausgeht, wie das zugrunde liegende Modell, das die untersuchten Datensätze abbildet, aussehen würde. Obwohl sie mit Bayes'schen Methoden oder neuronalen Netzen implementiert werden kann. Shen wir uns an, wie eine Implementierung mit genetischen Algorithmen helfen kann, eine im MQL5-Assistenten verwendbare Expertensignalklasse anzupassen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

Die Bayes'sche Inferenz ist die Anwendung des Bayes-Theorems, um die Wahrscheinlichkeitshypothese zu aktualisieren, wenn neue Informationen zur Verfügung stehen. Dies führt intuitiv zu einer Anpassung in der Zeitreihenanalyse, und so schauen wir uns an, wie wir dies bei der Erstellung von nutzerdefinierten Klassen nicht nur für das Signal, sondern auch für das Money-Management und Trailing-Stops nutzen können.
preview
Trianguläre Arbitrage mit Vorhersagen

Trianguläre Arbitrage mit Vorhersagen

Dieser Artikel vereinfacht die Dreiecksarbitrage und zeigt Ihnen, wie Sie mit Hilfe von Prognosen und spezieller Software intelligenter mit Währungen handeln können, selbst wenn Sie neu auf dem Markt sind. Sind Sie bereit, mit Expertise zu handeln?
preview
Aufbau eines Modells aus Kerzen, Trend und Nebenbedingungen (Teil 3): Erkennung von Trendänderungen bei der Verwendung dieses Systems

Aufbau eines Modells aus Kerzen, Trend und Nebenbedingungen (Teil 3): Erkennung von Trendänderungen bei der Verwendung dieses Systems

In diesem Artikel wird untersucht, wie Wirtschaftsnachrichten, das Anlegerverhalten und verschiedene Faktoren die Trendumkehr an den Märkten beeinflussen können. Es enthält eine Videoerklärung und fährt fort mit der Integration von MQL5-Code in unser Programm, um Trendumkehrungen zu erkennen, uns zu warnen und geeignete Maßnahmen auf der Grundlage der Marktbedingungen zu ergreifen. Dieser Artikel knüpft an frühere Artikel der Reihe an.
preview
Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)

Modifizierter Grid-Hedge EA in MQL5 (Teil IV): Optimierung der einfachen Grid-Strategie (I)

In diesem vierten Teil greifen wir die zuvor entwickelten Simple Hedge und Simple Grid Expert Advisors (EAs) wieder auf. Wir konzentrieren uns darauf, den Simple Grid EA durch mathematische Analysen und einen Brute-Force-Ansatz zu verfeinern, mit dem Ziel, eine optimale Strategie anzuwenden. Dieser Artikel befasst sich eingehend mit der mathematischen Optimierung der Strategie und legt den Grundstein für die künftige Erforschung der kodierungsbasierten Optimierung in späteren Ausgaben.
preview
Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Die Modelle, die wir erstellen, werden immer größer und komplexer. Dies erhöht nicht nur die Kosten für ihr Training, sondern auch für ihren Betrieb. Die Zeit, die für eine Entscheidung benötigt wird, ist jedoch oft entscheidend. In diesem Zusammenhang sollten wir Methoden zur Optimierung der Modellleistung ohne Qualitätseinbußen in Betracht ziehen.
preview
Statistische Arbitrage mit Vorhersagen

Statistische Arbitrage mit Vorhersagen

Wir werden uns mit statistischer Arbitrage beschäftigen, wir werden mit Python nach Korrelations- und Kointegrationssymbolen suchen, wir werden einen Indikator für den Pearson-Koeffizienten erstellen und wir werden einen EA für den Handel mit statistischer Arbitrage mit Vorhersagen erstellen, die mit Python und ONNX-Modellen gemacht werden.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.
preview
Wie Sie mit der Erfüllung von Händleraufträgen im Freelance-Service Geld verdienen können

Wie Sie mit der Erfüllung von Händleraufträgen im Freelance-Service Geld verdienen können

MQL5 Freelance ist ein Online-Dienst, bei dem Entwickler für die Erstellung von Handelsanwendungen für Händler als Kunden bezahlt werden. Der Dienst existiert seit 2010 sehr erfolgreich und hat bis heute über 100.000 Projekte im Gesamtwert von 7 Millionen Dollar abgeschlossen. Wie wir sehen, geht es hier um eine beträchtliche Menge Geld.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Lassen Sie uns mit der Entwicklung eines Multiwährungs-EAs mit mehreren parallel arbeitenden Strategien fortfahren. Versuchen wir, die gesamte mit der Eröffnung von Marktpositionen verbundene Arbeit von der Strategieebene auf die Ebene des EA zu verlagern, der die Strategien verwaltet. Die Strategien selbst werden nur virtuell gehandelt, ohne Marktpositionen zu eröffnen.
preview
Entwicklung eines Replay Systems (Teil 38): Den Weg ebnen (II)

Entwicklung eines Replay Systems (Teil 38): Den Weg ebnen (II)

Viele Menschen, die sich für MQL5-Programmierer halten, verfügen nicht über die Grundkenntnisse, die ich in diesem Artikel erläutern werde. Viele Menschen halten MQL5 für ein begrenztes Werkzeug, aber der eigentliche Grund ist, dass sie nicht über die erforderlichen Kenntnisse verfügen. Wenn Sie also etwas nicht wissen, brauchen Sie sich dafür nicht zu schämen. Es ist besser, sich dafür zu schämen, nicht zu fragen. MetaTrader 5 einfach dazu zu zwingen, die Indikatorduplikation zu deaktivieren, gewährleistet in keiner Weise eine Zwei-Wege-Kommunikation zwischen dem Indikator und dem Expert Advisor. Davon sind wir noch weit entfernt, aber die Tatsache, dass sich der Indikator auf dem Chart nicht dupliziert, stimmt uns zuversichtlich.
preview
Neuronale Netze leicht gemacht (Teil 71): Zielkonditionierte prädiktive Kodierung (Goal-Conditioned Predictive Coding, GCPC)

Neuronale Netze leicht gemacht (Teil 71): Zielkonditionierte prädiktive Kodierung (Goal-Conditioned Predictive Coding, GCPC)

In früheren Artikeln haben wir die Decision-Transformer-Methode und mehrere davon abgeleitete Algorithmen besprochen. Wir haben mit verschiedenen Zielsetzungsmethoden experimentiert. Während der Experimente haben wir mit verschiedenen Arten der Zielsetzung gearbeitet. Die Studie des Modells über die frühere Trajektorie blieb jedoch immer außerhalb unserer Aufmerksamkeit. In diesem Artikel. Ich möchte Ihnen eine Methode vorstellen, die diese Lücke füllt.
preview
Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

In diesem Artikel werden wir uns mit der Theorie des Kausalschlusses unter Verwendung von maschinellem Lernen sowie mit der Implementierung des nutzerdefinierten Ansatzes in Python befassen. Kausalschlüsse und kausales Denken haben ihre Wurzeln in der Philosophie und Psychologie und spielen eine wichtige Rolle für unser Verständnis der Realität.
preview
Neuronale Netze leicht gemacht (Teil 70): Operatoren der Closed-Form Policy Improvement (CFPI)

Neuronale Netze leicht gemacht (Teil 70): Operatoren der Closed-Form Policy Improvement (CFPI)

In diesem Artikel werden wir uns mit einem Algorithmus vertraut machen, der geschlossene Operatoren zur Verbesserung der Politik verwendet, um die Aktionen des Agenten im Offline-Modus zu optimieren.
preview
Neuronale Netze leicht gemacht (Teil 69): Dichte-basierte Unterstützungsbedingung für die Verhaltenspolitik (SPOT)

Neuronale Netze leicht gemacht (Teil 69): Dichte-basierte Unterstützungsbedingung für die Verhaltenspolitik (SPOT)

Beim Offline-Lernen verwenden wir einen festen Datensatz, der die Umweltvielfalt nur begrenzt abdeckt. Während des Lernprozesses kann unser Agent Aktionen generieren, die über diesen Datensatz hinausgehen. Wenn es keine Rückmeldungen aus der Umwelt gibt, wie können wir dann sicher sein, dass die Bewertungen solcher Maßnahmen korrekt sind? Die Beibehaltung der Agentenpolitik innerhalb des Trainingsdatensatzes ist ein wichtiger Aspekt, um die Zuverlässigkeit des Trainings zu gewährleisten. Darüber werden wir in diesem Artikel sprechen.
preview
Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 2): Zusammenführung integrierter Indikatoren

Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 2): Zusammenführung integrierter Indikatoren

In diesem Artikel geht es darum, die Vorteile der im MetaTrader 5 integrierten Indikatoren zu nutzen, um Signale abseits eines Trends zu erkennen. In Fortführung des vorherigen Artikels werden wir untersuchen, wie wir unsere Idee mit Hilfe von MQL5-Code in das endgültige Programm übertragen können.
preview
Wie man ein volatilitätsbasiertes Handelssystem (Chaikin Volatility - CHV) aufbaut und optimiert

Wie man ein volatilitätsbasiertes Handelssystem (Chaikin Volatility - CHV) aufbaut und optimiert

In diesem Artikel werden wir einen weiteren, volatilitätsbasierten Indikator namens Chaikin Volatility vorstellen. Wir werden verstehen, wie man einen nutzerdefinierten Indikator erstellt, nachdem wir herausgefunden haben, wie er verwendet und aufgebaut werden kann. Wir werden einige einfache Strategien vorstellen, die verwendet werden können, und sie dann testen, um zu verstehen, welche davon besser sein kann.
preview
Bewältigung der Herausforderungen bei der ONNX-Integration

Bewältigung der Herausforderungen bei der ONNX-Integration

ONNX ist ein großartiges Werkzeug für die Integration von komplexem KI-Code zwischen verschiedenen Plattformen. Es ist ein großartiges Werkzeug, das einige Herausforderungen mit sich bringt, die man angehen muss, um das Beste daraus zu machen.
preview
Nutzerdefinierte Indikatoren (Teil 1): Eine schrittweise Einführung in die Entwicklung von einfachen nutzerdefinierten Indikatoren in MQL5

Nutzerdefinierte Indikatoren (Teil 1): Eine schrittweise Einführung in die Entwicklung von einfachen nutzerdefinierten Indikatoren in MQL5

Erfahren Sie, wie Sie mit MQL5 nutzerdefinierte Indikatoren erstellen können. Dieser Einführungsartikel führt Sie durch die Grundlagen des Aufbaus einfacher nutzerdefinierter Indikatoren und demonstriert einen praktischen Ansatz zur Codierung verschiedener nutzerdefinierter Indikatoren für alle MQL5-Programmierer, die neu in diesem interessanten Thema sind.
preview
Lernen Sie Schritt für Schritt, wie Sie die Fair Value Gap (FVG)/Ungleichgewichte handeln können: Ein Ansatz des Smart Money-Konzepts

Lernen Sie Schritt für Schritt, wie Sie die Fair Value Gap (FVG)/Ungleichgewichte handeln können: Ein Ansatz des Smart Money-Konzepts

Eine Schritt-für-Schritt-Anleitung zur Erstellung und Implementierung eines automatisierten Handelsalgorithmus in MQL5 auf der Grundlage der Handelsstrategie Fair Value Gap (FVG). Eine detaillierte Anleitung zur Erstellung eines Expertenberaters, die sowohl für Anfänger als auch für erfahrene Händler nützlich sein kann.
preview
Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 1): Für EAs und technische Indikatoren

Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 1): Für EAs und technische Indikatoren

Dieser Artikel richtet sich an Anfänger und Profi-MQL5-Entwickler. Es stellt einen Code zur Verfügung, um signalgenerierende Indikatoren zu definieren und auf Trends in höheren Zeitrahmen zu beschränken. Auf diese Weise können Händler ihre Strategien verbessern, indem sie eine breitere Marktperspektive einbeziehen, was zu potenziell robusteren und zuverlässigeren Handelssignalen führt.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 15): Support-Vektor-Maschinen mit dem Newtonschen Polynom

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 15): Support-Vektor-Maschinen mit dem Newtonschen Polynom

Support-Vektor-Maschinen klassifizieren Daten auf der Grundlage vordefinierter Klassen, indem sie die Auswirkungen einer Erhöhung der Dimensionalität untersuchen. Es handelt sich um eine überwachte Lernmethode, die angesichts ihres Potenzials, mit mehrdimensionalen Daten umzugehen, ziemlich komplex ist. In diesem Artikel wird untersucht, wie die sehr einfache Implementierung von 2-dimensionalen Daten mit dem Newton'schen Polynom bei der Klassifizierung von Preis-Aktionen effizienter durchgeführt werden kann.
preview
MQL5-Assistent - Techniken, die Sie kennen sollten (14): Zeitreihenvorhersage mit mehreren Zielvorgaben durch STF

MQL5-Assistent - Techniken, die Sie kennen sollten (14): Zeitreihenvorhersage mit mehreren Zielvorgaben durch STF

Die räumlich-zeitliche Fusion, bei der sowohl räumliche als auch zeitliche Metriken zur Modellierung von Daten verwendet werden, ist vor allem bei der Fernerkundung und einer Vielzahl anderer visueller Aktivitäten nützlich, um ein besseres Verständnis unserer Umgebung zu erlangen. Dank eines veröffentlichten Artikels verfolgen wir einen neuen Ansatz, indem wir sein Potenzial für Händler untersuchen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 13): DBSCAN für eine Klasse für Expertensignale

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 13): DBSCAN für eine Klasse für Expertensignale

Density Based Spatial Clustering for Applications with Noise (DBSCAN) ist eine unüberwachte Form der Datengruppierung, die kaum Eingabeparameter benötigt, außer 2, was im Vergleich zu anderen Ansätzen wie K-Means ein Segen ist. Wir gehen der Frage nach, wie dies für das Testen und schließlich den Handel mit den von Wizard zusammengestellten Expert Advisers konstruktiv sein kann
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor für den automatisierten Handel, der den ZigZag-Indikator und den Awesome Oscillator als Signale verwendet.
preview
Verständnis von Programmierparadigmen (Teil 2): Ein objektorientierter Ansatz für die Entwicklung eines Price Action Expert Advisors

Verständnis von Programmierparadigmen (Teil 2): Ein objektorientierter Ansatz für die Entwicklung eines Price Action Expert Advisors

Lernen Sie das objektorientierte Programmierparadigma und seine Anwendung im MQL5-Code kennen. Dieser zweite Artikel geht tiefer auf die Besonderheiten der objektorientierten Programmierung ein und bietet anhand eines praktischen Beispiels praktische Erfahrungen. Sie lernen, wie Sie unseren früher entwickelten prozeduralen Price Action Expert Advisor mit dem EMA-Indikator und Kursdaten der Kerzen in objektorientierten Code umwandeln können.
preview
Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

In this third part, we revisit the Simple Hedge and Simple Grid Expert Advisors (EAs) developed earlier. Our focus shifts to refining the Simple Hedge EA through mathematical analysis and a brute force approach, aiming for optimal strategy usage. This article delves deep into the mathematical optimization of the strategy, setting the stage for future exploration of coding-based optimization in later installments.
preview
Advanced Variables and Data Types in MQL5

Advanced Variables and Data Types in MQL5

Variables and data types are very important topics not only in MQL5 programming but also in any programming language. MQL5 variables and data types can be categorized as simple and advanced ones. In this article, we will identify and learn about advanced ones because we already mentioned simple ones in a previous article.
preview
Neuronale Netze leicht gemacht (Teil 68): Offline Preference-guided Policy Optimization

Neuronale Netze leicht gemacht (Teil 68): Offline Preference-guided Policy Optimization

Seit den ersten Artikeln, die sich mit dem Verstärkungslernen befassten, haben wir uns auf die eine oder andere Weise mit zwei Problemen befasst: der Erkundung der Umgebung und der Bestimmung der Belohnungsfunktion. Jüngste Artikel haben sich mit dem Problem der Exploration beim Offline-Lernen befasst. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, bei dem die Autoren die Belohnungsfunktion vollständig eliminiert haben.
preview
Developing a Replay System (Part 37): Paving the Path (I)

Developing a Replay System (Part 37): Paving the Path (I)

In this article, we will finally begin to do what we wanted to do much earlier. However, due to the lack of "solid ground", I did not feel confident to present this part publicly. Now I have the basis to do this. I suggest that you focus as much as possible on understanding the content of this article. I mean not simply reading it. I want to emphasize that if you do not understand this article, you can completely give up hope of understanding the content of the following ones.
preview
Developing a Replay System (Part 36): Making Adjustments (II)

Developing a Replay System (Part 36): Making Adjustments (II)

One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 12): Das Newton-Polynom

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 12): Das Newton-Polynom

Das Newtonsche Polynom, bei dem aus einer Reihe von Punkten quadratische Gleichungen erstellt werden, ist ein archaischer, aber interessanter Ansatz für die Betrachtung einer Zeitreihe. In diesem Artikel versuchen wir zu untersuchen, welche Aspekte dieses Konzept für Händler von Nutzen sein könnten, und gehen auch auf seine Grenzen ein.
preview
Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

Entwicklung eines Replay System (Teil 34): Auftragssystem (III)

In diesem Artikel werden wir die erste Phase der Konstruktion abschließen. Obwohl dieser Teil recht schnell erledigt ist, werde ich auf Details eingehen, die zuvor nicht besprochen wurden. Ich werde einige Punkte erklären, die viele nicht verstehen. Wissen Sie, warum Sie die Umschalttaste oder die Strg-Taste drücken müssen?
preview
Erstellen eines Market-Making-Algorithmus in MQL5

Erstellen eines Market-Making-Algorithmus in MQL5

Wie arbeiten die Market Maker? Betrachten wir dieses Problem und erstellen wir einen primitiven Market-Making-Algorithmus.
preview
Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,
preview
Aufbau und Test von Keltner-Kanal-Handelssystemen

Aufbau und Test von Keltner-Kanal-Handelssystemen

In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.
preview
Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

Implementierung des verallgemeinerten Hurst-Exponenten und des Varianz-Verhältnis-Tests in MQL5

In diesem Artikel untersuchen wir, wie der verallgemeinerte Hurst-Exponent und der Varianzverhältnis-Test verwendet werden können, um das Verhalten von Preisreihen in MQL5 zu analysieren.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 6): Zwei RSI-Indikatoren kreuzen ihre Linien

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 6): Zwei RSI-Indikatoren kreuzen ihre Linien

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der zwei RSI-Indikatoren mit sich kreuzenden Linien verwendet, den Fast RSI, der sich mit dem Slow RSI kreuzt.
preview
Aufbau und Test des Handelssystems Aroon

Aufbau und Test des Handelssystems Aroon

In diesem Artikel erfahren wir, wie wir ein Aroon-Handelssystem aufbauen können, nachdem wir die Grundlagen der Indikatoren und die erforderlichen Schritte zum Aufbau eines Handelssystems auf der Grundlage des Aroon-Indikators gelernt haben. Nachdem wir dieses Handelssystem aufgebaut haben, werden wir es testen, um zu sehen, ob es profitabel sein kann oder noch optimiert werden muss.
preview
Datenwissenschaft und maschinelles Lernen (Teil 19): Überladen Sie Ihre AI-Modelle mit AdaBoost

Datenwissenschaft und maschinelles Lernen (Teil 19): Überladen Sie Ihre AI-Modelle mit AdaBoost

AdaBoost, ein leistungsstarker Boosting-Algorithmus, der die Leistung Ihrer KI-Modelle steigert. AdaBoost, die Abkürzung für Adaptive Boosting, ist ein ausgeklügeltes Ensemble-Lernverfahren, das schwache Lerner nahtlos integriert und ihre kollektive Vorhersagestärke erhöht.