Artikel über die Automatisierung von Handelssystemen in MQL5

icon

Lesen Sie Artikel über Handelssysteme, in denen unterschiedlichste Ideen vorgestellt sind. Sie erfahren, wie man   statistische Methoden und Muster auf japanischen Kerzen verwendet, wie man Signale filtern kann und wofür man Semaphor-Indikatoren braucht.

Mit dem Meister MQL5 lernen Sie, wie man einen Roboter ohne Programmieren zur schnellen Überprüfung von Handelsideen erstellen kann sowie was genetische Algorithmen sind.

Neuer Artikel
letzte | beste
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 10): Zugriff auf nutzerdefinierte Indikatoren

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 10): Zugriff auf nutzerdefinierte Indikatoren

Wie kann man auf nutzerdefinierte Indikatoren direkt in einem Expert Advisor zugreifen? Ein Handels-EA kann nur dann wirklich nützlich sein, wenn er nutzerdefinierte Indikatoren verwenden kann; andernfalls ist er nur ein Satz von Codes und Anweisungen.
Zeitreihen in der Bibliothek DoEasy (Teil 40): Bibliotheksbasierte Indikatoren - Aktualisierung der Daten in Echtzeit
Zeitreihen in der Bibliothek DoEasy (Teil 40): Bibliotheksbasierte Indikatoren - Aktualisierung der Daten in Echtzeit

Zeitreihen in der Bibliothek DoEasy (Teil 40): Bibliotheksbasierte Indikatoren - Aktualisierung der Daten in Echtzeit

Der Artikel befasst sich mit der Entwicklung eines einfachen Mehrperiodenindikators auf der Grundlage der DoEasy-Bibliothek. Wir verbessern die Klasse der Zeitreihen so, dass sie Daten aus beliebigen Zeitrahmen empfangen können, um sie in der aktuellen Diagrammperiode anzuzeigen.
Sozialer Handel mit Hilfe der MetaTrader 4 und MetaTrader 5 Handelsplattformen
Sozialer Handel mit Hilfe der MetaTrader 4 und MetaTrader 5 Handelsplattformen

Sozialer Handel mit Hilfe der MetaTrader 4 und MetaTrader 5 Handelsplattformen

Was ist Sozialer Handel? Sozialer Handel ist eine Kooperation von Händlern und Investoren mit Vorteilen für beide Seiten. Erfolgreiche Händler gestatten Einblicke in ihren Handel und potenzielle Investoren profitieren von diesen Einblicken und kopieren die Handel von denjenigen, die am vielversprechendsten aussehen.
Brauchen Händler Services von Entwicklern?
Brauchen Händler Services von Entwicklern?

Brauchen Händler Services von Entwicklern?

Der algorithmusbasierte Handel wird immer beliebter und notwendiger, wodurch es natürlich auch zu einer Nachfrage nach exotischen Algorithmen und ungewöhnlichen Aufgaben kam. Solche komplexen Anwendungen sind zu einem gewissen Ausmaß in der Code Base oder auf dem Market verfügbar. Obwohl Händler mit ein paar Klicks einfach auf diese Anwendungen zugreifen können, erfüllen sie möglicherweise nicht all ihre Anforderungen. In solchen Fällen suchen Händler im Abschnitt MQL5 Freelance nach Entwicklern, die die gewünschte Anwendung schreiben können, und erteilen einen Auftrag.
preview
Gradient Boosting beim transduktiven und aktiven maschinellen Lernen

Gradient Boosting beim transduktiven und aktiven maschinellen Lernen

In diesem Artikel werden wir aktive Methoden des maschinellen Lernens anhand von realen Daten betrachten und ihre Vor- und Nachteile diskutieren. Vielleicht helfen Ihnen diese Methoden und Sie werden sie in Ihr Arsenal an maschinellen Lernmodellen aufnehmen. Die Transduktion wurde von Vladimir Vapnik eingeführt, der Miterfinder der Support-Vector Machine (SVM) ist.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 18): Neues Auftragssystems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 18): Neues Auftragssystems (I)

Dies ist der erste Teil des neuen Auftragssystems. Seit wir begonnen haben, diesen EA in unseren Artikeln zu dokumentieren, hat er verschiedene Änderungen und Verbesserungen erfahren, wobei das gleiche Modell des Auftragssystems auf dem Chart beibehalten wurde.
preview
Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Der neue Artikel aus unserer Serie über die Gestaltung eines Handelssystems auf der Grundlage der beliebtesten technischen Indikatoren betrachtet einen neuen technischen Indikator - den Money Flow Index (Geldflussindikator, MFI). Wir werden ihn im Detail kennenlernen und ein einfaches Handelssystem mit Hilfe von MQL5 entwickeln, um es in MetaTrader 5 auszuführen.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 09): Automatisierung (I)

Erstellen eines EA, der automatisch funktioniert (Teil 09): Automatisierung (I)

Obwohl die Erstellung eines automatisierten EA keine sehr schwierige Aufgabe ist, können ohne die notwendigen Kenntnisse viele Fehler gemacht werden. In diesem Artikel werden wir uns ansehen, wie man die erste Stufe der Automatisierung aufbaut, die darin besteht, einen Auslöser zu erstellen, um den Breakeven und einen Trailing-Stop zu aktivieren.
Zeitreihen in der Bibliothek DoEasy (Teil 47): Standardindikatoren für mehrere Symbole und Perioden
Zeitreihen in der Bibliothek DoEasy (Teil 47): Standardindikatoren für mehrere Symbole und Perioden

Zeitreihen in der Bibliothek DoEasy (Teil 47): Standardindikatoren für mehrere Symbole und Perioden

In diesem Artikel beginne ich mit der Entwicklung von Methoden für die Arbeit mit Standardindikatoren, die letztlich die Erstellung von Multisymbol- und Mehrperioden-Standardindikatoren auf der Grundlage von Bibliotheksklassen ermöglichen werden. Außerdem werde ich das Ereignis "fehlende Balken" (skipped bars) zu den Zeitreihenklassen hinzufügen und die übermäßige Belastung des Hauptprogrammcodes beseitigen, indem ich die Bibliotheksvorbereitungsfunktionen in die Klasse CEngine verlege.
preview
Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Wir setzen unsere Diskussion über Algorithmen des Verstärkungslernens zur Lösung von Problemen im kontinuierlichen Aktionsraum fort. In diesem Artikel werde ich den Soft Actor-Critic (SAC) Algorithmus vorstellen. Der Hauptvorteil von SAC ist die Fähigkeit, optimale Strategien zu finden, die nicht nur die erwartete Belohnung maximieren, sondern auch eine maximale Entropie (Vielfalt) von Aktionen aufweisen.
Zeitreihen in der Bibliothek DoEasy (Teil 45): Puffer für Mehrperiodenindikator
Zeitreihen in der Bibliothek DoEasy (Teil 45): Puffer für Mehrperiodenindikator

Zeitreihen in der Bibliothek DoEasy (Teil 45): Puffer für Mehrperiodenindikator

In diesem Artikel werde ich mit der Verbesserung der Indikatorpufferobjekte und der Sammelklasse für die Arbeit in Mehrperioden- und Mehrsymbolmodi beginnen. Ich werde den Betrieb von Pufferobjekten für den Empfang und die Anzeige von Daten aus einem beliebigen Zeitrahmen auf dem aktuellen Symbolchart bespreche.
preview
Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

In diesem Artikel werde ich einen völlig anderen Ansatz für den algorithmischen Handel vorstellen, den ich nach langer Zeit gefunden habe. Das alles hat natürlich mit meinem Brute-Force-Programm zu tun, das eine Reihe von Änderungen erfahren hat, die es ihm ermöglichen, mehrere Probleme gleichzeitig zu lösen. Dennoch ist der Artikel allgemeiner und so einfach wie möglich gehalten, weshalb er auch für diejenigen geeignet ist, die nichts über Brute-Force wissen.
Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen
Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen

Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen

In diesem Artikel werde ich die Kollektionsklasse für die Markttiefe aller Symbole erstellen und mit der Entwicklung der Funktionalität für die Arbeit mit dem MQL5.com Signals-Dienst beginnen, indem ich die Signal-Objektklasse erstelle.
preview
Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier

Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier

Wir untersuchen weiterhin Algorithmen für das verstärkte Lernen. Alle bisher betrachteten Algorithmen erfordern die Erstellung einer Belohnungspolitik, die es dem Agenten ermöglicht, jede seiner Aktionen bei jedem Übergang von einem Systemzustand in einen anderen zu bewerten. Dieser Ansatz ist jedoch ziemlich künstlich. In der Praxis gibt es eine gewisse Zeitspanne zwischen einer Handlung und einer Belohnung. In diesem Artikel werden wir einen Algorithmus zum Trainieren eines Modells kennenlernen, der mit verschiedenen Zeitverzögerungen zwischen Aktion und Belohnung arbeiten kann.
preview
Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 1): Einrichten des Panels

Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 1): Einrichten des Panels

In diesem Artikel erstellen wir ein interaktives Handels-Dashboard mit der Klasse Controls in MQL5, das zur Rationalisierung von Handelsvorgängen dient. Das Panel enthält einen Titel, Navigationsschaltflächen für Handel, Schließen und Informationen sowie spezielle Aktionsschaltflächen für die Ausführung von Geschäften und die Verwaltung von Positionen. Am Ende dieses Artikels werden Sie über ein Grundgerüst verfügen, das Sie in den nächsten Kapiteln weiter ausbauen können.
preview
Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Was ist Frames Analyzer? Dies ist ein Plug-in-Modul für jeden Expert Advisor zur Analyse von Optimierungsframes während der Parameteroptimierung im Strategietester, aber auch außerhalb des Testers, durch Lesen einer MQD-Datei oder einer Datenbank, die unmittelbar nach der Parameteroptimierung erstellt wird. Sie können diese Optimierungsergebnisse mit anderen Nutzern teilen, die über das Tool Frames Analyzer verfügen, um die Ergebnisse gemeinsam zu diskutieren.
MetaTrader AppStore - Ergebnisse für  Q3/2013
MetaTrader AppStore - Ergebnisse für  Q3/2013

MetaTrader AppStore - Ergebnisse für Q3/2013

Ein weiteres Quartal des Jahres ist vorbei. Eine gute Gelegenheit für uns, die Ergebnisse des MetaTrader AppStore zusammenzufassen - der größte Platz für Handelsroboter und technische Indikatoren für MetaTrader Plattformen. Zum Ende des abgelaufenen Quartals haben mehr als 500 Entwickler über 1200 Produkte in Market platziert.
Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt
Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt

Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt

In diesem neuen Artikel aus unserer Serie zum Erlernen der Entwicklung von Handelssystemen stelle ich Ihnen den Commodities Channel Index (CCI) vor, erkläre seine Besonderheiten und zeige Ihnen, wie Sie ein Handelssystem auf Basis dieses Indikators erstellen können.
preview
Wie man einen nutzerdefinierten True Strength Index-Indikator mit MQL5 erstellt

Wie man einen nutzerdefinierten True Strength Index-Indikator mit MQL5 erstellt

Hier ist ein neuer Artikel darüber, wie man einen nutzerdefinierten Indikator erstellt. Dieses Mal werden wir mit dem True Strength Index (TSI) arbeiten und einen darauf basierenden Expert Advisor erstellen.
Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale
Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

In diesem Artikel werde ich die Kollektionsklasse der Signale des MQL5.com Signals-Dienstes mit den Funktionen zur Verwaltung von Signalen erstellen. Außerdem werde ich die Schnappschuss-Objektklasse der Markttiefe (Depth of Market, DOM) verbessern, um das gesamte Kauf- und Verkaufsvolumen im DOM anzuzeigen.
preview
Backpropagation von Neuronalen Netze mit MQL5-Matrizen

Backpropagation von Neuronalen Netze mit MQL5-Matrizen

Der Artikel beschreibt die Theorie und Praxis der Anwendung des Backpropagation-Algorithmus in MQL5 unter Verwendung von Matrizen. Es bietet vorgefertigte Klassen zusammen mit Beispielen von Skripten, Indikatoren und Expert Advisors.
preview
Wie Smart-Money-Konzepte (SMC) zusammen mit dem Fibonacci-Indikator einen optimalen Handelseinstieg signalisieren.

Wie Smart-Money-Konzepte (SMC) zusammen mit dem Fibonacci-Indikator einen optimalen Handelseinstieg signalisieren.

SMC (Orderblock) sind Schlüsselbereiche, in denen institutionelle Händler umfangreiche Käufe oder Verkäufe tätigen. Nach einer signifikanten Kursbewegung hilft Fibonacci dabei, ein potenzielles Retracement von einem kürzlichen Swing-Hoch zu einem Swing-Tief zu identifizieren, um einen optimalen Handelseinstieg zu finden.
preview
SP500 Handelsstrategie in MQL5 für Anfänger

SP500 Handelsstrategie in MQL5 für Anfänger

Entdecken Sie, wie Sie MQL5 nutzen können, um den S&P 500 mit Präzision zu prognostizieren, indem Sie die klassische technische Analyse für zusätzliche Stabilität einbeziehen und Algorithmen mit bewährten Prinzipien für robuste Markteinblicke kombinieren.
preview
Neuronale Netze leicht gemacht (Teil 29): Der Algorithmus Advantage Actor Critic

Neuronale Netze leicht gemacht (Teil 29): Der Algorithmus Advantage Actor Critic

In den vorangegangenen Artikeln dieser Reihe haben wir zwei Algorithmen des verstärkten Lernens (Reinforcement Learning) kennengelernt. Jede von ihnen hat seine eigenen Vor- und Nachteile. Wie so oft in solchen Fällen kommt man dann auf die Idee, beide Methoden in einem Algorithmus zu kombinieren und das Beste aus beiden zu verwenden. Dies würde die Unzulänglichkeiten eines jeden von ihnen ausgleichen. Eine dieser Methoden wird in diesem Artikel erörtert.
preview
Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil 4): Verhaltensmuster 2

Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil 4): Verhaltensmuster 2

In diesem Artikel werden wir unsere Serie über das Thema Entwurfmuster abschließen. Wir haben erwähnt, dass es drei Arten von Entwurfmuster gibt: Erzeugungs-, Verhaltens- und strukturelle Muster. Wir werden die verbleibenden Muster des Verhaltenstyps vervollständigen, die dabei helfen können, die Methode der Interaktion zwischen Objekten so festzulegen, dass unser Code sauber wird.
preview
Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 1): Erstellen des Panels

Erstellen einer interaktiven grafischen Nutzeroberfläche in MQL5 (Teil 1): Erstellen des Panels

In diesem Artikel werden die grundlegenden Schritte bei der Erstellung und Implementierung einer grafischen Nutzeroberfläche (GUI) mit MetaQuotes Language 5 (MQL5) erläutert. Nutzerdefinierte Utility-Panels verbessern die Nutzerinteraktion beim Handel, indem sie gängige Aufgaben vereinfachen und wichtige Handelsinformationen visualisieren. Durch die Erstellung nutzerdefinierter Panels können Händler ihre Arbeitsabläufe straffen und bei Handelsgeschäften Zeit sparen.
preview
Algorithmischer Handel mit MetaTrader 5 und R für Einsteiger

Algorithmischer Handel mit MetaTrader 5 und R für Einsteiger

Begeben wir uns auf eine fesselnde Entdeckungsreise, bei der Finanzanalyse und algorithmischer Handel aufeinandertreffen, während wir die Kunst der nahtlosen Verbindung von R und MetaTrader 5 enträtseln. Dieser Artikel ist Ihr Leitfaden für den Brückenschlag zwischen den analytischen Finessen von R und den beeindruckenden Handelsmöglichkeiten von MetaTrader 5.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 07): Kontoarten (II)

Erstellen eines EA, der automatisch funktioniert (Teil 07): Kontoarten (II)

Heute werden wir sehen, wie man einen Expert Advisor erstellt, der einfach und sicher im automatischen Modus arbeitet. Der Händler sollte sich immer darüber im Klaren sein, was der automatische EA tut, sodass er ihn im Falle einer „Entgleisung“ so schnell wie möglich aus dem Chart entfernen und die Kontrolle über die Situation übernehmen kann.
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst wird im nächsten Artikel implementiert).
preview
Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie

Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie

Ein umfassender Leitfaden zur Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage einer Unterstützungs- und Widerstandsstrategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
preview
Entwicklung eines Roboters in Python und MQL5 (Teil 1): Vorverarbeitung der Daten

Entwicklung eines Roboters in Python und MQL5 (Teil 1): Vorverarbeitung der Daten

Entwicklung eines auf maschinellem Lernen basierenden Handelsroboters: Ein detaillierter Leitfaden. Der erste Artikel in dieser Reihe befasst sich mit der Erfassung und Aufbereitung von Daten und Merkmalen. Das Projekt wird unter Verwendung der Programmiersprache Python und der Bibliotheken sowie der Plattform MetaTrader 5 umgesetzt.
Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen
Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

In diesem Artikel werde ich zwei Klassen erstellen (die Klassenobjekte des DOM-Schnappschusses und die der DOM-Schnappschuss-Reihe) und die Erstellung der DOM-Datenreihe testen.
preview
Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert

Wie man Smart Money Concepts (SMC) in Verbindung mit dem RSI-Indikator in einen EA integriert

Smart Money Concept (Break Of Structure) in Verbindung mit dem RSI-Indikator, um fundierte automatisierte Handelsentscheidungen auf der Grundlage der Marktstruktur zu treffen.
preview
Neuronale Netze leicht gemacht (Teil 16): Praktische Anwendung des Clustering

Neuronale Netze leicht gemacht (Teil 16): Praktische Anwendung des Clustering

Im vorigen Artikel haben wir eine Klasse für das Clustering von Daten erstellt. In diesem Artikel möchte ich Varianten für die mögliche Anwendung der gewonnenen Ergebnisse bei der Lösung praktischer Handelsaufgaben vorstellen.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

In diesem Artikel werden wir das System zuverlässiger machen, um eine robuste und sichere Nutzung zu gewährleisten. Eine der Möglichkeiten, die gewünschte Robustheit zu erreichen, besteht darin, den Code so oft wie möglich wiederzuverwenden, damit er ständig in verschiedenen Fällen getestet wird. Aber das ist nur eine der Möglichkeiten. Eine andere Möglichkeit ist die Verwendung von OOP.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)

Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)

Automatisierung bedeutet nichts, wenn Sie den Zeitplan nicht kontrollieren können. Kein Arbeitnehmer kann effizient sein, wenn er 24 Stunden am Tag arbeitet. Viele sind jedoch der Meinung, dass ein automatisiertes System 24 Stunden am Tag funktionieren sollte. Aber es ist immer gut, eine Möglichkeit zu haben, einen Arbeitsbereich für den EA festzulegen. In diesem Artikel geht es darum, wie man einen solchen Zeitbereich richtig festlegt.
preview
Modifizierter Grid-Hedge EA in MQL5 (Teil I): Erstellung eines einfachen Hedge EA

Modifizierter Grid-Hedge EA in MQL5 (Teil I): Erstellung eines einfachen Hedge EA

Wir werden einen einfachen Hedge EA als Basis für unseren fortgeschritteneren Grid-Hedge EA erstellen, der eine Mischung aus klassischen Grid- und klassischen Hedge-Strategien sein wird. Am Ende dieses Artikels werden Sie wissen, wie Sie eine einfache Hedge-Strategie erstellen können, und Sie werden auch erfahren, was die Leute darüber sagen, ob diese Strategie wirklich zu 100 % profitabel ist.
MQL5 Market - Ergebnisse für Q2/2013
MQL5 Market - Ergebnisse für Q2/2013

MQL5 Market - Ergebnisse für Q2/2013

MQL5 Market, bereits seit 18 Monaten erfolgreich, ist zum größten Platz für Handelsstrategien und technische Indikatoren für Händler geworden. Dort findet man ca. 800 Handels-Anwendungen von 350 Entwicklern aus der ganzen Welt. Viele Händler haben bereits mehr als 100.000 Handelsprogramme gekauft und auf ihre MetaTrader 5 Terminals heruntergeladen.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
preview
Neuronale Netze leicht gemacht (Teil 27): Tiefes Q-Learning (DQN)

Neuronale Netze leicht gemacht (Teil 27): Tiefes Q-Learning (DQN)

Wir studieren weiterhin das Verstärkungslernen, das Reinforcement Learning. In diesem Artikel werden wir uns mit der Methode des Deep Q-Learning vertraut machen. Mit dieser Methode hat das DeepMind-Team ein Modell geschaffen, das einen Menschen beim Spielen von Atari-Computerspielen übertreffen kann. Ich denke, es wird nützlich sein, die Möglichkeiten der Technologie zur Lösung von Handelsproblemen zu bewerten.