Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)
In diesem Artikel werden wir uns ansehen, wie das Mauszeigerproblem bei der Verwendung in Verbindung mit einer Wiedergabe-/Simulationsanwendung implementiert und gelöst werden kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Neuronales Netz in der Praxis: Das erste Neuron
In diesem Artikel beginnen wir damit, etwas Einfaches und Bescheidenes zu bauen: ein Neuron. Wir werden es mit einer sehr kleinen Menge an MQL5-Code programmieren. Das Neuron hat in meinen Tests hervorragend funktioniert. Gehen wir in dieser Artikelserie über neuronale Netze ein wenig zurück, um zu verstehen, wovon ich spreche.
Von der Grundstufe bis zur Mittelstufe: Array (II)
In diesem Artikel werden wir uns ansehen, was ein dynamisches Array und ein statisches Array sind. Gibt es einen Unterschied zwischen der Verwendung des einen oder des anderen? Oder ist es doch dasselbe? Wann sollten Sie den einen und wann den anderen Typ verwenden? Und was ist mit konstanten Arrays? Wir werden versuchen zu verstehen, wofür sie gedacht sind, und die Risiken berücksichtigen, die entstehen, wenn nicht alle Werte im Array initialisiert werden.
Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)
Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.
Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5
In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Klassifikatoren in MQL5 vor und erörtern ihre Wirksamkeit in verschiedenen Situationen.
Analyse des Binärcodes der Börsenkurse (Teil II): Umwandlung in BIP39 und Schreiben des GPT-Modells
Fortsetzung der Versuche, die Preisbewegungen zu entschlüsseln... Wie steht es mit der linguistischen Analyse des „Marktwörterbuchs“, das wir durch die Umwandlung des binären Preiscodes in BIP39 erhalten? In diesem Artikel befassen wir uns mit einem innovativen Ansatz für die Analyse von Börsendaten und untersuchen, wie moderne Techniken der natürlichen Sprachverarbeitung auf die Marktsprache angewendet werden können.
Websockets für MetaTrader 5: Asynchrone Client-Verbindungen mit dem Windows-API
Dieser Artikel beschreibt die Entwicklung einer nutzerdefinierten, dynamisch gelinkten Bibliothek, die asynchrone Websocket-Client-Verbindungen für MetaTrader-Programme ermöglicht.
Datenwissenschaft und ML (Teil 43): Erkennen verborgener Muster in Indikatordaten unter Verwendung Latenter Gaußscher Mischmodelle (LGMM)
Haben Sie sich jemals das Horoskop angesehen und das seltsame Gefühl gehabt, dass sich unter der Oberfläche ein Muster verbirgt? Ein Geheimcode, der Ihnen verrät, wohin sich die Preise entwickeln werden, wenn Sie ihn nur knacken könnten? Darf ich vorstellen: LGMM, Erkennen verborgener Muster im Markt. Ein maschinelles Lernmodell, das dabei hilft, diese verborgenen Muster im Markt zu erkennen.
Neuronale Netze im Handel: Transformer mit relativer Kodierung
Selbstüberwachtes Lernen kann ein effektives Mittel sein, um große Mengen ungekennzeichneter Daten zu analysieren. Die Effizienz wird durch die Anpassung der Modelle an die spezifischen Merkmale der Finanzmärkte gewährleistet, was zur Verbesserung der Wirksamkeit der traditionellen Methoden beiträgt. In diesem Artikel wird ein alternativer Aufmerksamkeitsmechanismus vorgestellt, der die relativen Abhängigkeiten und Beziehungen zwischen den Eingaben berücksichtigt.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)
Diese Diskussion befasst sich mit den Herausforderungen, die bei der Arbeit mit großen Codebasen auftreten. Wir werden die besten Praktiken für die Codeorganisation in MQL5 untersuchen und einen praktischen Ansatz zur Verbesserung der Lesbarkeit und Skalierbarkeit des Quellcodes unseres Trading Administrator Panels implementieren. Darüber hinaus wollen wir wiederverwendbare Code-Komponenten entwickeln, von denen andere Entwickler bei der Entwicklung ihrer Algorithmen profitieren können. Lesen Sie weiter und beteiligen Sie sich an der Diskussion.
Post-Factum-Handelsanalyse: Auswahl von Trailing-Stops und neuen Stoppstufen im Strategietester
Wir setzen das Thema der Analyse von geschlossenen Handelsgeschäften im Strategietester fort, um die Qualität des Handels zu verbessern. Schauen wir uns an, wie die Verwendung verschiedener Trailing-Stops unsere bisherigen Handelsergebnisse verändern kann.
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XI): Modernes Merkmal Kommunikationsschnittstelle (I)
Heute konzentrieren wir uns auf die Verbesserung der Messaging-Schnittstelle des Kommunikationspanels, um sie an die Standards moderner, leistungsstarker Kommunikationsanwendungen anzupassen. Diese Verbesserung wird durch eine Aktualisierung der Klasse CommunicationsDialog erreicht. Begleiten Sie uns in diesem Artikel und in der Diskussion, wenn wir die wichtigsten Erkenntnisse erkunden und die nächsten Schritte bei der Weiterentwicklung der Schnittstellenprogrammierung mit MQL5 skizzieren.
Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (III) – Indicator Insights
In diesem Artikel werden wir den News Headline EA weiterentwickeln, indem wir eine spezielle Indikator-Insight-Lane einführen – eine kompakte, auf dem Chart angezeigte Darstellung der wichtigsten technischen Signale, die von beliebten Indikatoren wie RSI, MACD, Stochastic und CCI generiert werden. Dieser Ansatz macht mehrere Unterfenster für Indikatoren auf dem MetaTrader 5-Terminal überflüssig, wodurch Ihr Arbeitsbereich übersichtlich und effizient bleibt. Indem wir die MQL5-API nutzen, um im Hintergrund auf Indikatordaten zuzugreifen, können wir mithilfe einer nutzerdefinierten Logik Markteinblicke in Echtzeit verarbeiten und visualisieren. Erforschen Sie mit uns, wie Sie Indikatordaten in MQL5 manipulieren können, um ein intelligentes und platzsparendes Scrolling Insights System zu erstellen, und das alles auf einer einzigen horizontalen Spur in Ihrem Trading Chart.
Websockets für MetaTrader 5: Asynchrone Client-Verbindungen mit dem Windows-API
Dieser Artikel beschreibt die Entwicklung einer nutzerdefinierten, dynamisch gelinkten Bibliothek, die asynchrone Websocket-Client-Verbindungen für MetaTrader-Programme ermöglicht.
Automatisieren von Handelsstrategien in MQL5 (Teil 24): London Session Breakout System mit Risikomanagement und Trailing Stops
In diesem Artikel entwickeln wir ein London Session Breakout System, das Ausbrüche vor der Londoner Handelsspanne identifiziert und schwebende Aufträge mit anpassbaren Handelsarten und Risikoeinstellungen platziert. Wir integrieren Funktionen wie Trailing Stops, Risiko-Ertrags-Verhältnisse, maximale Drawdown-Grenzen und ein Kontrollpanel für die Überwachung und Verwaltung in Echtzeit.
Entwicklung eines Replay-Systems (Teil 71): Das richtige Bestimmen der Zeit (IV)
In diesem Artikel werden wir uns ansehen, wie man das, was im vorigen Artikel über unseren Wiedergabe-/Simulationsdienst gezeigt wurde, implementiert. Wie bei vielen anderen Dingen im Leben sind auch hier Probleme vorprogrammiert. Und dieser Fall war keine Ausnahme. In diesem Artikel werden wir die Dinge weiter verbessern. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose
Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.
Von der Grundstufe bis zur Mittelstufe: Array (IV)
In diesem Artikel sehen wir uns an, wie wir etwas sehr Ähnliches wie in Sprachen wie C, C++ und Java implementieren können. Ich spreche von der Übergabe einer praktisch unendlichen Anzahl von Parametern innerhalb einer Funktion oder Prozedur. Auch wenn dies ein ziemlich fortgeschrittenes Thema zu sein scheint, kann das, was hier gezeigt wird, meiner Meinung nach von jedem, der die vorherigen Konzepte verstanden hat, leicht umgesetzt werden. Vorausgesetzt, sie wurden wirklich richtig verstanden.
Von der Grundstufe bis zur Mittelstufe: Definitionen (II)
In diesem Artikel werden wir unsere Kenntnisse über die Direktive #define fortsetzen, aber dieses Mal werden wir uns auf ihre zweite Form der Verwendung konzentrieren, nämlich die Erstellung von Makros. Da dieses Thema etwas kompliziert sein kann, haben wir uns für eine Anwendung entschieden, mit der wir uns schon seit einiger Zeit beschäftigen. Ich wünsche Ihnen viel Spaß mit dem heutigen Artikel.
Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 59): Verstärkungslernen (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir setzen unseren letzten Artikel über DDPG mit MA und stochastischen Indikatoren fort, indem wir andere Schlüsselklassen des Reinforcement Learning untersuchen, die für die Implementierung von DDPG entscheidend sind. Obwohl wir hauptsächlich in Python kodieren, wird das Endprodukt, ein trainiertes Netzwerk, als ONNX nach MQL5 exportiert, wo wir es als Ressource in einen von einem Assistenten zusammengestellten Expert Advisor integrieren.
Vom Neuling zum Experten: Reporting EA – Einrichten des Arbeitsablaufs
Makler stellen oft in regelmäßigen Abständen nach einem vordefinierten Zeitplan Berichte über Handelskonten zur Verfügung. Diese Firmen haben über ihre API-Technologien Zugang zu Ihren Kontoaktivitäten und Ihrer Handelshistorie, sodass sie in Ihrem Namen Performanceberichte erstellen können. Ebenso speichert das MetaTrader 5-Terminal detaillierte Aufzeichnungen Ihrer Handelsaktivitäten, die mit MQL5 genutzt werden können, um vollständig angepasste Berichte zu erstellen und personalisierte Liefermethoden zu definieren.
Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.
Automatisieren von Handelsstrategien in MQL5 (Teil 35): Erstellung eines Blockausbruch-Handelssystems
In diesem Artikel erstellen wir ein Block-Ausbruchssytems in MQL5, das Konsolidierungsbereiche identifiziert, Ausbrüche erkennt und Ausbruchsblöcke mit Umkehrpunkten validiert, um Retests mit definierten Risikoparametern zu handeln. Das System visualisiert Auftrags- und Ausbruchsblöcke mit dynamischen Kennzeichnungen und Pfeilen und unterstützt den automatisierten Handel und Trailing Stops.
Entwicklung eines Replay-Systems (Teil 72): Eine ungewöhnliche Kommunikation (I)
Was wir heute schaffen, wird schwer zu verstehen sein. Deshalb werde ich in diesem Artikel nur über die Anfangsphase sprechen. Bitte lesen Sie diesen Artikel aufmerksam, er ist eine wichtige Voraussetzung, bevor wir zum nächsten Schritt übergehen. Der Zweck dieses Materials ist rein didaktisch, da wir nur die vorgestellten Konzepte studieren und beherrschen werden, ohne praktische Anwendung.
Neuronale Netze im Handel: Ein Ensemble von Agenten mit Aufmerksamkeitsmechanismen (MASAAT)
Wir stellen das Multi-Agent Self-Adaptive Portfolio Optimization Framework (MASAAT) vor, das Aufmerksamkeitsmechanismen und Zeitreihenanalyse kombiniert. MASAAT generiert eine Reihe von Agenten, die Preisreihen und Richtungsänderungen analysieren und so die Identifizierung signifikanter Fluktuationen in Vermögenspreisen auf verschiedenen Detailebenen ermöglichen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator
Der Accelerator Oszillator ist ein weiterer Indikator von Bill Williams, der die Beschleunigung der Preisdynamik und nicht nur ihr Tempo verfolgt. Ähnlich wie der Awesome Oszillator, den wir in einem kürzlich erschienenen Artikel besprochen haben, versucht er, die Verzögerungseffekte zu vermeiden, indem er sich mehr auf die Beschleunigung als auf die Geschwindigkeit konzentriert. Wir untersuchen wie immer, welche Muster wir daraus ableiten können und welche Bedeutung sie für den Handel mit einem von einem Assistenten zusammengestellten Expert Advisor haben könnten.
Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)
Der Artikel befasst sich mit Methoden zur Kodierung von Ausgangsdaten im hyperbolischen latenten Raum durch anisotrope Diffusionsprozesse. Dies trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation genauer zu erfassen und die Qualität der Analyse zu verbessern.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 55): SAC mit priorisierter Erfahrungswiederholung
Replay-Puffer sind beim Reinforcement Learning besonders wichtig bei Off-Policy-Algorithmen wie DQN oder SAC. Damit wird das Sampling-Verfahren dieses Speicherpuffers in den Mittelpunkt gerückt. Während bei den Standardoptionen von SAC beispielsweise eine zufällige Auswahl aus diesem Puffer verwendet wird, wird bei den priorisierten Erfahrungswiederholungspuffern eine Feinabstimmung vorgenommen, indem eine Auswahl aus dem Puffer auf der Grundlage eines TD-Scores erfolgt. Wir gehen auf die Bedeutung des Reinforcement Learning ein und untersuchen wie immer nur diese Hypothese (nicht die Kreuzvalidierung) in einem von einem Assistenten zusammengestellten Expert Advisor.
Wechselseitige Information als Kriterium für die schrittweise Auswahl von Merkmalen
In diesem Artikel stellen wir eine MQL5-Implementierung der schrittweisen Merkmalsauswahl vor, die auf der wechselseitigen Information zwischen einer optimalen Prädiktorenmenge und einer Zielvariablen basiert.
Umstellung auf MQL5 Algo Forge (Teil 3): Verwendung externer Repositories für die eigenen Projekte
Lassen Sie uns untersuchen, wie Sie externen Code aus einem beliebigen Repository im MQL5 Algo Forge Speicher in Ihr eigenes Projekt integrieren können. In diesem Artikel wenden wir uns endlich dieser vielversprechenden, aber auch komplexeren Aufgabe zu: wie man Bibliotheken aus Drittanbieter-Repositories innerhalb von MQL5 Algo Forge praktisch verbindet und verwendet.
Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)
In diesem Artikel werden wir uns mit Änderungen befassen, die einen effizienteren und sichereren Betrieb des Replay-/Simulationssystems ermöglichen. Ich möchte auch nicht die Aufmerksamkeit derjenigen vernachlässigen, die das Beste durch die Verwendung von Klassen machen wollen. Darüber hinaus werden wir ein spezielles Problem in MQL5 betrachten, das die Codeleistung bei der Arbeit mit Klassen verringert, und erklären, wie man es lösen kann.
Entwicklung eines Replay-Systems (Teil 64): Abspielen des Dienstes (V)
In diesem Artikel werden wir uns ansehen, wie zwei Fehler im Code behoben werden können. Ich werde jedoch versuchen, sie so zu erklären, dass Sie als Programmieranfänger verstehen, dass die Dinge nicht immer so laufen, wie Sie es erwarten. Wie auch immer, dies ist eine Gelegenheit, zu lernen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Dieser Antrag sollte keinesfalls als endgültiges Dokument betrachtet werden, das lediglich der Erkundung der vorgestellten Konzepte dient.
Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung
Eine der Möglichkeiten zur Steigerung der Effizienz des Modelltrainings und des Konvergenzprozesses ist die Verbesserung der Optimierungsmethoden. Adam-mini ist eine adaptive Optimierungsmethode, die den grundlegenden Adam-Algorithmus verbessern soll.
Feature Engineering mit Python und MQL5 (Teil IV): Erkennung von Kerzenmustern mit der UMAP-Regression
Techniken zur Dimensionenreduktion werden häufig eingesetzt, um die Leistung von Modellen des maschinellen Lernens zu verbessern. Wir wollen nun eine relativ neue Technik erörtern, die als Uniform Manifold Approximation and Projection (UMAP) bekannt ist. Diese neue Technik wurde entwickelt, um die Einschränkungen herkömmlicher Methoden zu überwinden, die Artefakte und Verzerrungen in den Daten verursachen. UMAP ist eine leistungsstarke Technik zur Dimensionenreduzierung und hilft uns, ähnliche Kerzen auf eine neuartige und effektive Weise zu gruppieren, die unsere Fehlerquoten bei Daten, die nicht in der Stichprobe enthalten sind, reduziert und unsere Handelsleistung verbessert.
Beherrschung von Protokollaufzeichnungen (Teil 9): Implementierung des Builder-Musters und Hinzufügen von Standardkonfigurationen
Dieser Artikel zeigt, wie man die Verwendung der Logify-Bibliothek mit dem Builder-Muster und automatischen Standardkonfigurationen drastisch vereinfachen kann. Es erklärt die Struktur der spezialisierten Builder, wie man sie mit intelligenter Autovervollständigung verwendet und wie man ein funktionierendes Protokoll auch ohne manuelle Konfiguration sicherstellt. Es umfasst auch Anpassungen für MetaTrader 5 Build 5100.
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 2): Entwicklung eines EA
Dieser Artikel erklärt, wie man einen professionellen Heikin Ashi-basierten Expert Advisor (EA) in MQL5 entwickelt. Sie werden lernen, wie man Eingabeparameter, Enumerationen, Indikatoren und globale Variablen einrichtet und die zentrale Handelslogik implementiert. Sie können auch einen Backtest mit Gold durchführen, um Ihre Arbeit zu überprüfen.
Entwicklung des Price Action Analysis Toolkit (Teil 35): Training und Einsatz von Vorhersagemodellen
Historische Daten sind alles andere als „Müll“ – sie sind die Grundlage für jede solide Marktanalyse. In diesem Artikel führen wir Sie Schritt für Schritt von der Erfassung der Historie über die Verwendung zur Erstellung eines Prognosemodells bis hin zum Einsatz dieses Modells für Live-Preisprognosen. Lesen Sie weiter, um zu erfahren, wie!
Entwicklung eines Replay-Systems (Teil 76): Neuer Chart Trade (III)
In diesem Artikel werden wir uns ansehen, wie der Code von DispatchMessage, der im vorherigen Artikel fehlte, funktioniert. Wir werden das Thema des nächsten Artikels vorstellen. Aus diesem Grund ist es wichtig, die Funktionsweise dieses Codes zu verstehen, bevor wir zum nächsten Thema übergehen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
Marktsimulation (Teil 01): Kreuzaufträge (I)
Heute beginnen wir mit der zweiten Phase, in der wir uns mit dem Replay-/Simulationssystem beschäftigen werden. Zunächst zeigen wir eine mögliche Lösung für Kreuzaufträge. Ich werde Ihnen die Lösung zeigen, aber sie ist noch nicht endgültig. Es wird eine mögliche Lösung für ein Problem sein, das wir in naher Zukunft lösen müssen.