

Grafiken in der DoEasy-Bibliothek (Teil 90): Standard-Ereignisse für grafische Objekte. grundlegende Funktionsweise
In diesem Artikel werde ich die grundlegenden Funktionen für die Verfolgung von Standardereignissen für grafische Objekte implementieren. Ich werde von einem Doppelklick-Ereignis auf ein grafisches Objekt ausgehen.

Filterung und Merkmalsextraktion von Frequenzen
In diesem Artikel untersuchen wir die Anwendung digitaler Filter auf Zeitreihen, die im Frequenzbereich dargestellt werden, um einzigartige Merkmale zu extrahieren, die für Vorhersagemodelle nützlich sein können.

MQL5-Integration: Python
Python ist eine bekannte und beliebte Programmiersprache mit vielen Funktionen, insbesondere in den Bereichen Finanzen, Datenwissenschaft, künstliche Intelligenz und maschinelles Lernen. Python ist ein leistungsfähiges Werkzeug, das auch beim Handel nützlich sein kann. MQL5 ermöglicht es uns, diese leistungsstarke Sprache als Integration zu nutzen, um unsere Ziele effektiv zu erreichen. In diesem Artikel erfahren Sie, wie Sie Python in MQL5 integrieren und verwenden können, nachdem Sie einige grundlegende Informationen über Python gelernt haben.

Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie
Die Modelle, die wir erstellen, werden immer größer und komplexer. Dies erhöht nicht nur die Kosten für ihr Training, sondern auch für ihren Betrieb. Die Zeit, die für eine Entscheidung benötigt wird, ist jedoch oft entscheidend. In diesem Zusammenhang sollten wir Methoden zur Optimierung der Modellleistung ohne Qualitätseinbußen in Betracht ziehen.

Kombinieren Sie fundamentale und technische Analysestrategien in MQL5 für Einsteiger
In diesem Artikel wird erörtert, wie sich Trendfolge- und Fundamentalprinzipien nahtlos in einen Expert Advisor integrieren lassen, um eine robustere Strategie zu entwickeln. In diesem Artikel wird gezeigt, wie einfach es für jedermann ist, mit MQL5 maßgeschneiderte Handelsalgorithmen zu erstellen und anzuwenden.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 17): Zugang zu Daten im Internet (III)
In diesem Artikel setzen wir die Überlegungen fort, wie man Daten aus dem Internet beziehen und in einem Expert Advisor verwenden kann. Dieses Mal werden wir ein alternatives System entwickeln.

Tipps von einem professionellen Programmierer (Teil III): Protokollierung. Anbindung an das Seq-Log-Sammel- und Analysesystem
Implementierung der Klasse Logger zur Vereinheitlichung und Strukturierung von Meldungen, die in das Expertenprotokoll ausgegeben werden. Anschluss an das Seq Logsammel- und Analysesystem. Online-Überwachung der Log-Meldungen.

Entwicklung eines Replay System (Teil 26): Expert Advisor Projekt — die Klasse C_Terminal
Wir können nun mit der Erstellung eines Expert Advisors für die Verwendung im Wiedergabe-/Simulationssystem beginnen. Wir brauchen jedoch eine Verbesserung und keine zufällige Lösung. Trotzdem sollten wir uns von der anfänglichen Komplexität nicht einschüchtern lassen. Es ist wichtig, irgendwo anzufangen, sonst enden wir damit, dass wir über die Schwierigkeit einer Aufgabe grübeln, ohne überhaupt zu versuchen, sie zu bewältigen. Genau darum geht es beim Programmieren: Hindernisse durch Lernen, Testen und umfassende Forschung zu überwinden.

Entwicklung eines Replay System (Teil 29): Expert Advisor Projekt — Die Klasse C_Mouse (II)
Nachdem wir die Klasse C_Mouse verbessert haben, können wir uns auf die Erstellung einer Klasse konzentrieren, die einen völlig neuen Rahmen für unsere Analyse schaffen soll. Wir werden weder Vererbung noch Polymorphismus verwenden, um diese neue Klasse zu erstellen. Stattdessen werden wir die Preislinie ändern, oder besser gesagt, neue Objekte hinzufügen. Genau das werden wir in diesem Artikel tun. In der nächsten Ausgabe werden wir uns ansehen, wie man die Analyse ändern kann. All dies geschieht, ohne den Code der Klasse C_Mouse zu ändern. Nun, eigentlich wäre es einfacher, dies durch Vererbung oder Polymorphismus zu erreichen. Es gibt jedoch auch andere Methoden, um das gleiche Ergebnis zu erzielen.

Praktische Entwicklung von Handelsstrategien
In diesem Artikel werden wir versuchen, unsere eigene Handelsstrategie zu entwickeln. Jede Handelsstrategie muss auf einer Art statistischem Vorteil beruhen. Außerdem sollte dieser Vorteil noch lange Zeit bestehen.

Grafiken in der DoEasy-Bibliothek (Teil 97): Unabhängige Handhabung der Bewegung von Formularobjekten
In diesem Artikel werde ich die Implementierung des unabhängigen Ziehens von beliebigen Formularobjekten mit der Maus betrachten. Außerdem werde ich die Bibliothek um Fehlermeldungen und neue Deal-Eigenschaften ergänzen, die zuvor in das Terminal und MQL5 implementiert wurden.

Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)
Die meisten Menschen, die programmieren lernen wollen oder davon träumen, haben eigentlich keine Ahnung, was sie da tun. Ihre Tätigkeit besteht darin, dass sie versuchen, Dinge auf eine bestimmte Art und Weise zu schaffen. Bei der Programmierung geht es jedoch nicht darum, geeignete Lösungen zu finden. Auf diese Weise können mehr Probleme als Lösungen entstehen. Hier werden wir etwas Fortgeschritteneres und daher etwas anderes machen.

Algorithmen zur Optimierung mit Populationen: Evolutionsstrategien, (μ,λ)-ES und (μ+λ)-ES
Der Artikel behandelt eine Gruppe von Optimierungsalgorithmen, die als Evolutionsstrategien (ES) bekannt sind. Sie gehören zu den allerersten Populationsalgorithmen, die evolutionäre Prinzipien für die Suche nach optimalen Lösungen nutzen. Wir werden Änderungen an den herkömmlichen ES-Varianten vornehmen und die Testfunktion und die Prüfstandsmethodik für die Algorithmen überarbeiten.

Erstellen eines MQL5 Expert Advisors basierend auf der PIRANHA Strategie unter Verwendung von Bollinger Bändern
In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, der auf der PIRANHA-Strategie basiert und Bollinger-Bänder zur Verbesserung der Handelseffektivität nutzt. Wir erörtern die Grundprinzipien der Strategie, die kodierte Umsetzung und die Methoden zur Prüfung und Optimierung. Dieses Wissen ermöglicht es Ihnen, den EA in Ihren Handelsszenarien effektiv einzusetzen

Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5
Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,

Nachrichtenhandel leicht gemacht (Teil 1): Erstellen einer Datenbank
Der Nachrichten basierte Handel kann kompliziert und erdrückend sein. In diesem Artikel werden wir die einzelnen Schritte zur Beschaffung von Nachrichtendaten erläutern. Außerdem werden wir mehr über den MQL5-Wirtschaftskalender und seine Möglichkeiten erfahren.

Aufbau eines Modells aus Kerzen, Trend und Nebenbedingungen (Teil 3): Erkennung von Trendänderungen bei der Verwendung dieses Systems
In diesem Artikel wird untersucht, wie Wirtschaftsnachrichten, das Anlegerverhalten und verschiedene Faktoren die Trendumkehr an den Märkten beeinflussen können. Es enthält eine Videoerklärung und fährt fort mit der Integration von MQL5-Code in unser Programm, um Trendumkehrungen zu erkennen, uns zu warnen und geeignete Maßnahmen auf der Grundlage der Marktbedingungen zu ergreifen. Dieser Artikel knüpft an frühere Artikel der Reihe an.

Kausalschluss in den Problemen bei Zeitreihenklassifizierungen
In diesem Artikel werden wir uns mit der Theorie des Kausalschlusses unter Verwendung von maschinellem Lernen sowie mit der Implementierung des nutzerdefinierten Ansatzes in Python befassen. Kausalschlüsse und kausales Denken haben ihre Wurzeln in der Philosophie und Psychologie und spielen eine wichtige Rolle für unser Verständnis der Realität.

Verwendung von Optimierungsalgorithmen zur Konfiguration von EA-Parametern im laufenden Betrieb
Der Artikel behandelt die praktischen Aspekte der Verwendung von Optimierungsalgorithmen, um die besten EA-Parameter im laufenden Betrieb zu finden, sowie die Virtualisierung von Handelsoperationen und EA-Logik. Der Artikel kann als Anleitung für die Implementierung von Optimierungsalgorithmen in einen EA verwendet werden.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 46): Ichimoku
Der Ichimuko Kinko Hyo ist ein bekannter japanischer Indikator, der als Trenderkennungssystem dient. Wir untersuchen dies, wie schon in früheren ähnlichen Artikeln, Muster für Muster und bewerten auch die Strategien und Testberichte mit Hilfe der MQL5-Assistentenbibliothek Klassen und Assembly.


Grafiken in der DoEasy-Bibliothek (Teil 92): Speicherklasse der grafischen Standardobjekte. Änderungsverlauf der Objekteigenschaften
In diesem Artikel werde ich die Speicherklasse der grafischen Standardobjekte erstellen, die es dem Objekt ermöglicht, seine Zustände zu speichern, wenn seine Eigenschaften geändert werden. Dies wiederum ermöglicht den Rücksprung zu vorherigen Zuständen des grafischen Objekts.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM
Restriktive Boltzmann-Maschinen (RBM) sind im Grunde genommen ein zweischichtiges neuronales Netz, das durch Dimensionsreduktion eine unbeaufsichtigte Klassifizierung ermöglicht. Wir nehmen die Grundprinzipien und untersuchen, ob wir durch eine unorthodoxe Umgestaltung und ein entsprechendes Training einen nützlichen Signalfilter erhalten können.

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 7): Signale von ZigZag und dem Awesome Oszillator
Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor für den automatisierten Handel, der den ZigZag-Indikator und den Awesome Oscillator als Signale verwendet.

Schildkrötenpanzer-Evolutionsalgorithmus (TSEA)
Dies ist ein einzigartiger Optimierungsalgorithmus, der von der Evolution des Schildkrötenpanzers inspiriert wurde. Der TSEA-Algorithmus emuliert die allmähliche Bildung keratinisierter Hautbereiche, die optimale Lösungen für ein Problem darstellen. Die besten Lösungen werden „härter“ und befinden sich näher an der Außenfläche, während die weniger erfolgreichen Lösungen „weicher“ bleiben und sich im Inneren befinden. Der Algorithmus verwendet eine Gruppierung der Lösungen nach Qualität und Entfernung, wodurch weniger erfolgreiche Optionen erhalten bleiben und Flexibilität und Anpassungsfähigkeit gewährleistet werden.

Datenwissenschaft und maschinelles Lernen (Teil 24): Zeitreihenprognose im Forex mit regulären AI-Modellen
Auf den Devisenmärkten ist es sehr schwierig, den zukünftigen Trend vorherzusagen, ohne eine Vorstellung von der Vergangenheit zu haben. Nur sehr wenige maschinelle Lernmodelle sind in der Lage, Vorhersagen zu treffen, indem sie vergangene Werte berücksichtigen. In diesem Artikel werden wir erörtern, wie wir klassische (Nicht-Zeitreihen-) Modelle der Künstlichen Intelligenz nutzen können, um den Markt zu schlagen

Mehrschichtiges Perzeptron und Backpropagation-Algorithmus (Teil 3): Integration mit dem Strategy Tester - Überblick (I).
Das mehrschichtige Perzeptron ist eine Weiterentwicklung des einfachen Perzeptrons, das nichtlineare separierbare Probleme lösen kann. Zusammen mit dem Backpropagation-Algorithmus kann dieses neuronale Netz effektiv trainiert werden. In Teil 3 der Serie Multilayer Perceptron und Backpropagation werden wir sehen, wie man diese Technik in den Strategy Tester integriert. Diese Integration ermöglicht die Nutzung komplexer Datenanalysen, um bessere Entscheidungen zur Optimierung Ihrer Handelsstrategien zu treffen. In diesem Artikel werden wir die Vorteile und Probleme dieser Technik erörtern.

Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)
In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?

Entwicklung eines Replay System (Teil 27): Expert Advisor Projekt — Die Klasse C_Mouse (II)
In diesem Artikel werden wir die Klasse C_Mouse implementieren. Es bietet die Möglichkeit, auf höchstem Niveau zu programmieren. Wenn man über High-Level- oder Low-Level-Programmiersprachen spricht, geht es jedoch nicht darum, obszöne Wörter oder Jargon in den Code aufzunehmen. Es ist genau andersherum. Wenn wir von High-Level- oder Low-Level-Programmierung sprechen, meinen wir, wie leicht oder schwer der Code für andere Programmierer zu verstehen ist.

Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)
In diesem Artikel werde ich den Optimierungsalgorithmus Affen-Algorithmus (MA, Monkey Algorithmus) betrachten. Die Fähigkeit dieser Tiere, schwierige Hindernisse zu überwinden und die unzugänglichsten Baumkronen zu erreichen, bildete die Grundlage für die Idee des MA-Algorithmus.

Algorithmen zur Optimierung mit Populationen: Algorithmus des Mind Evolutionary Computation (MEC)
Der Artikel befasst sich mit einem Algorithmus aus der MEC-Familie, dem Simple Mind Evolutionary Computation Algorithmus (Simple MEC, SMEC). Der Algorithmus zeichnet sich durch die Schönheit seiner Idee und die Einfachheit seiner Umsetzung aus.

Selbstoptimierender Expert Advisor mit MQL5 und Python (Teil III): Den Boom-1000-Algorithmus knacken
In dieser Artikelserie erörtern wir, wie wir Expert Advisors entwickeln können, die sich selbständig an dynamische Marktbedingungen anpassen. Im heutigen Artikel werden wir versuchen, ein tiefes neuronales Netz auf die synthetischen Märkte von Derivativen abzustimmen.

Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie
Seien Sie dabei, wenn wir uns heute der Herausforderung stellen, eine Handelsstrategie rund um das USDJPY-Paar zu entwickeln. Wir handeln Kerzenmuster, die auf dem täglichen Zeitrahmen gebildet werden, weil sie potenziell mehr Kraft hinter sich haben. Unsere anfängliche Strategie war gewinnbringend, was uns ermutigte, die Strategie weiter zu verfeinern und zusätzliche Sicherheitsschichten hinzuzufügen, um das gewonnene Kapital zu schützen.


Grafiken in der DoEasy-Bibliothek (Teil 95): Steuerelemente für zusammengesetzte grafische Objekte
In diesem Artikel befasse ich mich mit den Hilfsmitteln zur Verwaltung zusammengesetzter grafischer Objekte - Steuerelemente zur Verwaltung eines erweiterten grafischen Standardobjekts. Heute werde ich ein wenig vom Verschieben eines zusammengesetzten grafischen Objekts abweichen und den Handler für Änderungsereignisse in einem Chart mit einem zusammengesetzten grafischen Objekt implementieren. Außerdem werde ich mich auf die Steuerelemente für die Verwaltung eines zusammengesetzten grafischen Objekts konzentrieren.

Entwicklung eines Replay System (Teil 30): Expert Advisor Projekt — Die Klasse C_Mouse (IV)
Heute werden wir eine Technik lernen, die uns in verschiedenen Phasen unseres Berufslebens als Programmierer sehr helfen kann. Oft ist es nicht die Plattform selbst, die begrenzt ist, sondern das Wissen der Person, die über die Grenzen spricht. In diesem Artikel erfahren Sie, dass Sie mit gesundem Menschenverstand und Kreativität die MetaTrader 5-Plattform viel interessanter und vielseitiger gestalten können, ohne auf verrückte Programme oder ähnliches zurückgreifen zu müssen, und einfachen, aber sicheren und zuverlässigen Code erstellen können. Wir werden unsere Kreativität nutzen, um bestehenden Code zu ändern, ohne eine einzige Zeile des Quellcodes zu löschen oder hinzuzufügen.

Chaostheorie im Handel (Teil 2): Tiefer tauchen
Wir setzen unsere Untersuchung der Chaostheorie auf den Finanzmärkten fort. Dieses Mal werde ich seine Anwendbarkeit auf die Analyse von Währungen und anderen Vermögenswerten untersuchen.

DoEasy. Steuerung (Teil 12): WinForms-Objekte Basislistenobjekt, ListBox und ButtonListBox
In diesem Artikel werde ich das Basisobjekt der WinForms-Objektlisten sowie die beiden neuen Objekte erstellen: ListBox und ButtonListBox.

MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 07): Dendrogramme
Die Klassifizierung von Daten zu Analyse- und Prognosezwecken ist ein sehr vielfältiger Bereich des maschinellen Lernens, der eine große Anzahl von Ansätzen und Methoden umfasst. Dieser Beitrag befasst sich mit einem solchen Ansatz, der Agglomerativen Hierarchischen Klassifikation.

Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)
In unseren Modellen verwenden wir häufig verschiedene Aufmerksamkeitsalgorithmen. Und am häufigsten verwenden wir wahrscheinlich Transformers. Ihr größter Nachteil ist der Ressourcenbedarf. In diesem Artikel wird ein neuer Algorithmus vorgestellt, der dazu beitragen kann, die Rechenkosten ohne Qualitätseinbußen zu senken.

Winkelbasierte Operationen für Händler
Dieser Artikel behandelt winkelbasierte Operationen. Wir werden uns Methoden zur Konstruktion von Winkeln und deren Verwendung beim Handel ansehen.

Entwicklung eines Replay Systems — Marktsimulation (Teil 24): FOREX (V)
Heute werden wir eine Einschränkung aufheben, die bisher Simulationen auf der Grundlage des letzten Kurses verhindert hat, und einen neuen Einstiegspunkt speziell für diese Art von Simulationen einführen. Der gesamte Funktionsmechanismus wird auf den Prinzipien des Devisenmarktes beruhen. Der Hauptunterschied in diesem Verfahren ist die Trennung von Bid- und Last-Simulationen. Es ist jedoch wichtig zu beachten, dass die Methode zur Randomisierung der Zeit und zur Anpassung an die Klasse C_Replay in beiden Simulationen identisch bleibt. Das ist gut, denn Änderungen in einem Modus führen automatisch zu Verbesserungen im anderen, vor allem wenn es um die Handhabung der Zeit zwischen den Ticks geht.