Selbstoptimierende Expert Advisors in MQL5 erstellen
Bauen wir Expert Advisor, die in die Zukunft blicken und sich an jeden Markt anpassen können.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 19): Neues Auftragssystem (II)
In diesem Artikel werden wir ein grafisches Ordnungssystem vom Typ „Schau, was passiert“ entwickeln. Bitte beachten Sie, dass wir dieses Mal nicht bei Null anfangen, sondern das bestehende System modifizieren, indem wir weitere Objekte und Ereignisse in den Chart des von uns gehandelten Vermögenswerts einfügen.
Komplexe Indikatoren mit Objekten vereinfachen
In diesem Artikel wird eine Methode zur Erstellung komplexer Indikatoren vorgestellt, bei der gleichzeitig die Probleme vermieden werden, die bei der Arbeit mit mehreren Flächen, Puffern und/oder der Kombination von Daten aus mehreren Quellen auftreten.
Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks
Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren Tick angekommen sind.
Strukturen in MQL5 und Methoden zum Drucken deren Daten
In diesem Artikel werden wir uns die Strukturen von MqlDateTime, MqlTick, MqlRates und MqlBookInfo ansehen sowie die Methoden zum Drucken von deren Daten. Um alle Felder einer Struktur auszudrucken, gibt es die Standardfunktion ArrayPrint(), die die im Array enthaltenen Daten mit dem Typ der behandelten Struktur in einem praktischen Tabellenformat anzeigt.
Aufbau des Kerzenmodells Trend-Constraint (Teil 6): Alles in einem integrieren
Eine große Herausforderung ist die Verwaltung mehrerer Chartfenster desselben Paares, in denen das gleiche Programm mit unterschiedlichen Funktionen läuft. Lassen Sie uns besprechen, wie Sie mehrere Integrationen in einem Hauptprogramm zusammenfassen können. Darüber hinaus werden wir Einblicke in die Konfiguration des Programms für den Druck in ein Journal und die Kommentierung der erfolgreichen Signalübertragung auf der Chartschnittstelle geben. Weitere Informationen finden Sie in diesem Artikel, der eine Fortsetzung der Artikelserie ist.
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5
Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
Zeitreihen in der Bibliothek DoEasy (Teil 53): Abstrakte Basisklasse der Indikatoren
Der Artikel beschäftigt sich mit dem Erstellen eines abstrakten Indikators, der im Weiteren als Basisklasse für die Erstellung von Objekten der Standard- und nutzerdefinierten Indikatoren der Bibliothek verwendet wird.
Erstellen eines Ticker-Panels: Basisversion
Hier zeige ich Ihnen, wie Sie Bildschirme mit Preistickern erstellen, die normalerweise zur Anzeige von Börsenkursen verwendet werden. Ich werde es nur mit MQL5 machen, ohne eine komplexe externe Programmierung zu verwenden.
MQL als Darstellungsmittel für graphische Schnittstellen von MQL-Programmen. Teil 2
In diesem Beitrag wird die neue Konzeption zur Beschreibung der Fenster-Schnittstelle von MQL-Programmen anhand der Strukturen von MQL weiter überprüft. Die automatische Erstellung einer GUI auf der Grundlage des MQL-Markups bietet zusätzliche Funktionalität für die Zwischenspeicherung und dynamische Generierung der Elemente und die Steuerung der Stile und neuen Schemata für die Verarbeitung der Ereignisse. Beigefügt ist eine erweiterte Version der Standardbibliothek von Steuerelementen.
Grafiken in der Bibliothek DoEasy (Teil 82): Die Umgestaltung von Bibliotheksobjekten und Kollektion von grafischen Objekten
In diesem Artikel werde ich alle Bibliotheksobjekte verbessern, indem ich jedem Objekt einen eindeutigen Typ zuordne und die Entwicklung der Klasse der grafischen Bibliotheksobjekte Kollektion fortsetze.
Automatisierter Raster-Handel mit Stop-Pending-Aufträge an der Moscow Exchange (MOEX)
Der Artikel befasst sich mit dem Ansatz des Raster-Handels (Grid-Trading), der auf Stop-Pending-Aufträge basiert und in einem MQL5 Expert Advisor an der Moscow Exchange (MOEX) implementiert wurde. Eine der einfachsten Strategien beim Handel am Markt ist eine Reihe von Aufträgen, die darauf abzielen, den Marktpreis zu „fangen“.
DoEasy. Steuerung (Teil 4): Paneel-Steuerung, Parameter für Padding und Dock
In diesem Artikel werde ich die Handhabung der Parameter von Padding (interne Einzüge/Rand auf allen Seiten eines Elements) und Dock (die Art und Weise, wie sich ein Objekt in seinem Container befindet) implementieren.
Zeitreihen in der Bibliothek DoEasy (Teil 44): Kollektionsklasse der Objekte von Indikatorpuffern
Der Artikel befasst sich mit der Erstellung einer Kollektionsklasse der Objekte von Indikatorpuffern. Ich werde die Fähigkeit testen, eine beliebige Anzahl von Puffern für Indikatoren zu erstellen und mit ihnen zu arbeiten (die maximale Anzahl von Indikatorpuffern, die in MQL erstellt werden können, beträgt 512).
MQL5 Handels-Toolkit (Teil 1): Entwicklung einer EX5-Bibliothek zur Positionsverwaltung
Lernen Sie, wie Sie ein Entwickler-Toolkit für die Verwaltung verschiedener Positionsoperationen mit MQL5 erstellen können. In diesem Artikel zeige ich Ihnen, wie Sie eine Funktionsbibliothek (ex5) erstellen können, die einfache bis fortgeschrittene Positionsverwaltungsoperationen durchführt, einschließlich der automatischen Behandlung und Meldung der verschiedenen Fehler, die bei der Bearbeitung von Positionsverwaltungsaufgaben mit MQL5 auftreten.
Erstellen eines EA, der automatisch funktioniert (Teil 11): Automatisierung (III)
Ein automatisiertes System wird ohne angemessene Sicherheit nicht erfolgreich sein. Die Sicherheit wird jedoch nicht gewährleistet sein, wenn man bestimmte Dinge nicht richtig versteht. In diesem Artikel werden wir untersuchen, warum es so schwierig ist, ein Maximum an Sicherheit in automatisierten Systemen zu erreichen.
Universelles Regressionsmodell für die Prognostizierung von Marktpreisen (Teil 2): Natürliche, technologische und soziale Übergangsfunktionen
Dieser Artikel ist eine logische Fortsetzung des vorangegangenen Artikels. Er hebt die Fakten hervor, die die im ersten Artikel gezogenen Schlussfolgerungen bestätigen. Diese Fakten wurden in den zehn Jahren nach der Veröffentlichung dieses Artikels beobachtet. Sie konzentrieren sich auf drei festgestellte dynamische Übergangsfunktionen (transient functions), die die Muster der Marktpreisänderungen beschreiben.
Grafik in der Bibliothek DoEasy (Teil 78): Animationsprinzipien in der Bibliothek. Schneiden von Bildern
In diesem Artikel werde ich die Animationsprinzipien definieren, die in einigen Teilen der Bibliothek verwendet werden sollen. Außerdem werde ich eine Klasse entwickeln, mit der ein Teil des Bildes kopiert und an einer bestimmten Stelle des Formularobjekts eingefügt werden kann, wobei der Teil des Formularhintergrunds, über den das Bild gelegt werden soll, erhalten bleibt und wiederhergestellt wird.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 16): Zugang zu Daten im Internet (II)
Wie man Daten aus dem Web in einen Expert Advisor überträgt, ist nicht so offensichtlich. Das ist gar nicht so einfach, wenn man nicht alle Möglichkeiten des MetaTrader 5 kennt.
Erstellen eines EA, der automatisch funktioniert (Teil 12): Automatisierung (IV)
Wenn Sie glauben, dass automatisierte Systeme einfach sind, dann haben Sie wahrscheinlich nicht ganz verstanden, was es braucht, um sie zu erstellen. In diesem Artikel werden wir über das Problem sprechen, das viele Expert Advisors umbringt. Das willkürliche Auslösen von schwebenden Aufträgen ist eine mögliche Lösung für dieses Problem.
Erwartungsnutzen im Handel
In diesem Artikel geht es den Erwartungsnutzen. Wir werden einige Beispiele für seine Verwendung im Handel sowie die Ergebnisse, die mit seiner Hilfe erzielt werden können, betrachten.
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden
Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
Grafik in der Bibliothek DoEasy (Teil 81): Integration von Grafiken in Bibliotheksobjekt
Es ist nun an der Zeit, die bereits erstellten Objekte in die zuvor erstellten Bibliotheksobjekte zu integrieren. Dadurch wird jedes Bibliotheksobjekt mit einem eigenen grafischen Objekt ausgestattet, das den Nutzern die Interaktion mit dem Programm ermöglicht.
Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)
Wie wäre es, ein System zu schaffen, das es uns ermöglicht, den Markt zu studieren, wenn er geschlossen ist, oder sogar Marktsituationen zu simulieren? Wir beginnen hier eine neue Artikelserie, in der wir uns mit diesem Thema beschäftigen werden.
Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5 (Teil I): Ein bewegliches GUI (I)
Entfesseln Sie die Macht der dynamischen Datendarstellung in Ihren Handelsstrategien oder Dienstprogrammen mit unserem umfassenden Leitfaden zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in das Kernkonzept von Chartereignissen und lernen Sie, wie Sie einfache und mehrfach bewegliche GUI auf demselben Chart entwerfen und implementieren. Dieser Artikel befasst sich auch mit dem Hinzufügen von Elementen zu Ihrer grafischen Nutzeroberfläche, um deren Funktionsweise und Ästhetik zu verbessern.
Erfahren Sie, wie Sie ein Handelssystem durch Accumulation/Distribution (AD) entwerfen
Willkommen zu einem neuen Artikel aus unserer Serie über das Erlernen des Entwerfens von Handelssystemen auf der Grundlage der beliebtesten technischen Indikatoren. In diesem Artikel erfahren Sie mehr über einen neuen technischen Indikator, den Accumulation/Distribution Indikator, und darüber, wie Sie ein Handelssystem mit MQL5 entwerfen basierend auf einfachen AD-Handelsstrategien, um sie im MetaTrader 5 verwenden zu können.
Andere Klassen in der Bibliothek DoEasy (Teil 71): Ereignisse der Kollektion von Chartobjekten
In diesem Artikel werde ich die Funktionalität für die Verfolgung einiger Ereignisse von Chartobjekten erstellen — Hinzufügen/Entfernen von Symbolcharts und Chart-Unterfenstern, sowie Hinzufügen/Entfernen/Ändern von Indikatoren in Chart-Fenstern.
Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)
Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.
Die diskrete Hartley-Transformation
In diesem Artikel werden wir eine der Methoden der Spektralanalyse und Signalverarbeitung betrachten - die diskrete Hartley-Transformation. Es ermöglicht die Filterung von Signalen, die Analyse ihres Spektrums und vieles mehr. Die Möglichkeiten der DHT stehen denen der diskreten Fourier-Transformation in nichts nach. Im Gegensatz zur DFT werden bei der DHT jedoch nur reelle Zahlen verwendet, was die Umsetzung in der Praxis erleichtert, und die Ergebnisse der Anwendung sind anschaulicher.
Mehrere Indikatoren auf einem Chart (Teil 02): Erste Experiment
Im vorherigen Artikel "Mehrere Indikatoren in einem Chart" habe ich das Konzept und die Grundlagen der Verwendung mehrerer Indikatoren in einem Chart vorgestellt. In diesem Artikel werde ich den Quellcode zur Verfügung stellen und ihn im Detail erklären.
Verwendung des Algorithmus PatchTST für maschinelles Lernen zur Vorhersage der Kursentwicklung in den nächsten 24 Stunden
In diesem Artikel wenden wir einen relativ komplexen Algorithmus eines neuronalen Netzes aus dem Jahr 2023 namens PatchTST zur Vorhersage der Kursentwicklung der nächsten 24 Stunden an. Wir werden das offizielle Repository verwenden, geringfügige Änderungen vornehmen, ein Modell für EURUSD trainieren und es zur Erstellung von Zukunftsprognosen sowohl in Python als auch in MQL5 anwenden.
Nicht-lineare Indikatoren
In diesem Artikel werde ich versuchen, einige Möglichkeiten zur Erstellung nichtlinearer Indikatoren und deren Verwendung im Handel zu besprechen. In der MetaTrader-Handelsplattform gibt es eine ganze Reihe von Indikatoren, die nicht-lineare Ansätze verwenden.
DoEasy. Steuerung (Teil 31): Scrollen des Inhalts des ScrollBar-Steuerelements
In diesem Artikel werde ich die Funktionsweise des Scrollens des Inhalts des Containers mithilfe der Schaltflächen der horizontalen Bildlaufleiste implementieren.
Neuronale Netze leicht gemacht (Teil 62): Verwendung des Entscheidungs-Transformer in hierarchischen Modellen
In den letzten Artikeln haben wir verschiedene Optionen für die Verwendung der Entscheidungs-Transformer-Methode gesehen. Die Methode erlaubt es, nicht nur den aktuellen Zustand zu analysieren, sondern auch die Trajektorie früherer Zustände und die darin durchgeführten Aktionen. In diesem Artikel werden wir uns auf die Anwendung dieser Methode in hierarchischen Modellen konzentrieren.
Arbeiten mit ONNX-Modellen in den Datenformaten float16 und float8
Die Datenformate, die zur Darstellung von Modellen des maschinellen Lernens verwendet werden, spielen eine entscheidende Rolle für deren Effektivität. In den letzten Jahren sind mehrere neue Datentypen aufgetaucht, die speziell für die Arbeit mit Deep-Learning-Modellen entwickelt wurden. In diesem Artikel werden wir uns auf zwei neue Datenformate konzentrieren, die sich in modernen Modellen durchgesetzt haben.
Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität
In diesem Teil setzen wir die Diskussion über die Modelle der Künstlichen Intelligenz fort. Wir untersuchen vor allem Algorithmen für unüberwachtes Lernen. Wir haben bereits einen der Clustering-Algorithmen besprochen. In diesem Artikel stelle ich eine Variante zur Lösung von Problemen im Zusammenhang mit der Dimensionsreduktion vor.
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)
In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5
Dieser Artikel beschreibt die Schritte zur Erstellung eines Expert Advisors (EA), der Kursausbrüche nach Konsolidierungsphasen ausnutzt. Durch die Identifizierung von Konsolidierungsbereichen und die Festlegung von Ausbruchsniveaus können Händler ihre Handelsentscheidungen auf der Grundlage dieser Strategie automatisieren. Der Expert Advisor zielt darauf ab, klare Einstiegs- und Ausstiegspunkte zu bieten und gleichzeitig falsche Ausbrüche zu vermeiden.
Neuronale Netze leicht gemacht (Teil 65): Abstandsgewichtetes überwachtes Lernen (DWSL)
In diesem Artikel werden wir einen interessanten Algorithmus kennenlernen, der an der Schnittstelle von überwachten und verstärkenden Lernmethoden angesiedelt ist.
Der Handel von Paaren
In diesem Artikel werden wir uns mit dem Handel von Paaren befassen, d. h. mit den Grundsätzen und den Aussichten für seine praktische Anwendung. Wir werden auch versuchen, dafür eine Handelsstrategie zu entwickeln.