有关MQL5策略测试的文章

icon

如何开发,编写和测试交易策略,如何找到最优的系统参数,以及如何分析结果?该 MetaTrader 平台为交易机器人开发者提供了丰富的功能,可以快速、准确地测试交易思路。阅读这些文章,了解如何测试多币种机器人,以及如何利用 MQL5 云网络 达到优化目的。

建议自动交易系统的开发者,在策略测试器中,先从测试基本面即时报价算法开始。

添加一个新的文章
最近 | 最佳
preview

开发回放系统(第33部分):订单系统(二)

今天,我们将继续开发订单系统。正如您将看到的,我们将大规模重用其他文章中已经展示的内容。尽管如此,你还是会在这篇文章中获得一点奖励。首先,我们将开发一个可以与真实交易服务器一起使用的系统,无论是从模拟账户还是从真实账户。我们将广泛使用MetaTrader 5平台,该平台将从一开始就为我们提供所有必要的支持。
preview

开发回放系统 — 市场模拟(第 08 部分):锁定指标

在本文中,我们将亲眼见证如何在简单地利用 MQL5 语言锁定指标,我们将以一种非常有趣和迷人的方式做到这一点。
preview

开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

在上一篇文章中,我们针对复现系统进行了一些修复并加入了测试,以确保可能的最佳稳定性。 我们还着手为这个系统创建和使用配置文件。
preview

MQL5 中的范畴论 (第 5 部分):均衡器

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview

开发回放系统 — 市场模拟(第 09 部分):自定义事件

在此,我们将见到自定义事件是如何被触发的,以及指标如何报告回放/模拟服务的状态。
preview

开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果

让我们来概述一下 EA 开发的主要阶段。首先要做的一件事就是优化所开发交易策略的单个实例。让我们试着在一个地方收集优化过程中测试器通过的所有必要信息。
preview

种群优化算法:Nelder-Mead(NM),或单纯形搜索方法

本文表述针对 Nelder-Mead 方法进行的彻底探索,解释了如何在每次迭代中修改和重新排列单纯形(函数参数空间),从而达成最优解,并讲述了如何改进该方法。
preview

构建K线图趋势约束模型(第8部分):EA的开发(一)

在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
preview

群体优化算法:混合蛙跳算法(SFL)

本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。
preview

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。
preview

开发回放系统(第 37 部分):铺平道路 (一)

在这篇文章中,我们终于要开始做我们早就想做的事情了。之前,由于缺乏 "坚实的基础",我没有信心公开介绍这部分内容。现在我有了这样做的基础。我建议您尽可能集中精力理解本文的内容。我指的不仅仅是阅读,我想强调的是,如果你不理解这篇文章,你可能就是完全放弃了理解以后文章内容的希望。
preview

群体优化算法:差分进化(DE)

在本文中,我们将讨论在前面讨论过的所有算法中最有争议的算法 - 差分进化算法(Differential Evolution,DE)。
preview

群体优化算法:螺旋动态优化 (SDO) 算法

文章介绍了一种基于自然界螺旋轨迹构造模式(如软体动物贝壳)的优化算法 - 螺旋动力学优化算法(Spiral Dynamics Optimization,SDO)。我对作者提出的算法进行了彻底的修改和完善,本文将探讨这些修改的必要性。
preview

MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)

本文是以 MQL5 实现范畴论系列的延续。 本期,我们引入幺半群作为域(集合),通过包含规则和幺元,将范畴论自其它数据分类方法分离开来。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

开发回放系统 — 市场模拟(第 11 部分):模拟器的诞生(I)

为了依据数据形成柱线,我们必须放弃回放,并开始研发一款模拟器。 我们将采用 1-分钟柱线,因为它们所需的难度最小。
preview
开发回放系统 — 市场模拟(第 16 部分):新的类系统

开发回放系统 — 市场模拟(第 16 部分):新的类系统

我们需要更好地组织我们的工作。 代码正在快速增长,如果现在不做,那么以后就变得更不可能了。 我们分而治之。 MQL5 支持类,可协助实现此任务,但为此,我们需要对类有一定的了解。 大概最让初学者困惑的是继承。 在本文中,我们将看到如何以实用和简单的方式来运用这些机制。
preview
开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

开发回放系统 — 市场模拟(第 03 部分):调整设置(I)

我们从梳理当前状况开始,因为我们尚未以最好的方式开始。 如果我们现在不这样做,我们很快就会遇到麻烦。
preview
开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

开发回放系统 — 市场模拟(第 06 部分):首次改进(I)

在本文中,我们将开始稳固整个系统,若无,则我们可能无法进行后续步骤。
preview
开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

为了获得一个好的 EA,我们需要为它选择多组好的交易策略实例参数。这可以通过对不同的交易品种运行优化然后选择最佳结果来手动完成。但最好将这项工作委托给程序,并从事更有成效的活动。
preview
用置信区间估计未来效能

用置信区间估计未来效能

在这篇文章中,我们深入研究自举法技术的应用,作为评估自动化策略未来效能的一种手段。
preview
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。
preview
开发回放系统(第 40 部分):启动第二阶段(一)

开发回放系统(第 40 部分):启动第二阶段(一)

今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。
preview
威廉·江恩(William Gann)方法(第二部分):创建江恩宫格指标

威廉·江恩(William Gann)方法(第二部分):创建江恩宫格指标

我们将基于“江恩九宫格”创建一个指标,该指标通过时间和价格方格构建而成。我们将提供指标代码,并在平台上针对不同的时间区间,对该指标进行测试。
preview
开发回放系统(第30部分):EA交易项目——C_Mouse类(四)

开发回放系统(第30部分):EA交易项目——C_Mouse类(四)

今天,我们将学习一种技术,它可以在程序员职业生涯的不同阶段对我们有很大帮助。通常,受到限制的不是平台本身,而是谈论限制的人的知识。这篇文章将告诉你,凭借常识和创造力,你可以让 MetaTrader 5 平台变得更加有趣和通用,而无需创建疯狂的程序或类似的东西,并创建简单但安全可靠的代码。我们将利用我们的创造力修改现有代码,而不删除或添加源代码中的任何一行。
preview
开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备

开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备

目前,我们的 EA 使用数据库来获取交易策略单个实例的初始化字符串。然而,这个数据库相当大,包含许多实际 EA 操作不需要的信息。让我们尝试在不强制连接到数据库的情况下确保 EA 的功能。
preview
使用Python和MQL5进行交易策略的自动参数优化

使用Python和MQL5进行交易策略的自动参数优化

有多种用于交易策略和参数自我优化的算法。这些算法基于历史和当前市场数据自动改进交易策略。在本文中,我们将通过Python和MQL5的示例来探讨其中一种算法。
preview
开发回放系统 — 市场模拟(第 24 部分):外汇(V)

开发回放系统 — 市场模拟(第 24 部分):外汇(V)

今天,我们将去除阻止基于最后成交价进行模拟的限制,并将专门针对这类模拟引入一个新的切入点。整个操作机制将基于外汇市场的原则。该过程的主要区别在于出价(Bid)和最后成交价(Last)模拟的分离。不过,重点要注意,用于随机化时间,并将其调整为与 C_Replay 类兼容的方法在两类模拟中保持雷同。这很好,因为一种模式的变化会导致另一种模式的自动改进,尤其遇到处理跳价之间的时间。
preview
量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
开发回放系统 — 市场模拟(第 22 部分):外汇(III)

开发回放系统 — 市场模拟(第 22 部分):外汇(III)

虽然这是关于这个主题的第三篇文章,但我必须为那些还不了解股票市场和外汇市场之间区别的人解释一下:最大的区别在于,在外汇中没有、或者更确切地说,我们得不到交易过程中有关一些实际发生关键处的信息。
preview
群体优化算法:随机扩散搜索(SDS)

群体优化算法:随机扩散搜索(SDS)

本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。
preview
射箭算法(Archery Algorithm, AA)

射箭算法(Archery Algorithm, AA)

本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。
preview
种群优化算法:微人工免疫系统(Micro-AIS)

种群优化算法:微人工免疫系统(Micro-AIS)

本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。
preview
MetaTrader 5中的蒙特卡罗置换测试

MetaTrader 5中的蒙特卡罗置换测试

在本文中,我们将了解如何仅使用 Metatrader 5在任何 EA 交易上基于修改的分时数据进行置换测试。
preview
开发回放系统 — 市场模拟(第 18 部分):跳价和更多跳价(II)

开发回放系统 — 市场模拟(第 18 部分):跳价和更多跳价(II)

显然,目前的衡量度与创建 1-分钟柱线的理想时间相距甚远。这是我们要率先解决的一件事。解决同步问题并不困难。也许这看起来很难,但实际上却很简单。在上一篇文章中,我们没有进行所需的调整,因为它的目的是解释如何把图表上创建 1-分钟柱线的跳价数据转移至市场观察窗口。
preview
群体优化算法:带电系统搜索(CSS)算法

群体优化算法:带电系统搜索(CSS)算法

在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
preview
在MQL5中置换价格柱

在MQL5中置换价格柱

在这篇文章中,我们提出了一种置换价格柱的算法,并详细说明了如何使用置换测试来识别策略性能被编造来欺骗 EA 交易的潜在买家的情况。
preview
开发回放系统(第 63 部分):玩转服务(四)

开发回放系统(第 63 部分):玩转服务(四)

在本文中,我们将最终解决一分钟柱形上的分时报价模拟问题,以便它们能够与真实分时报价共存。这将帮助我们避免将来出现问题。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
群体优化算法:思维进化计算(MEC)算法

群体优化算法:思维进化计算(MEC)算法

本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。