
连续前行优化 (第三部分): 将机器人适配为自动优化器
第三部分充当前两部分之间的桥梁:它阐述的是第一篇文章中研究的 DLL,以及第二篇文章中论述的报告下载对象之间的交互机制。 我们将分析从 DLL 导入的包装类的创建过程,该类可依据交易历史记录形成 XML 文件。 我们还将研究一种与此包装器进行交互的方法。


交易者的 LifeHack: 测试中的余额,回撤,负载和订单指标
如何使测试过程有更好的可视化呢?答案很简单:您需要在策略测试器中使用一个或者多个指标,包含一个订单指标,一个余额和净值指标,一个回撤和存款负载指标。这种方案将有助您可视化地跟踪订单的实况,余额和净值的改变,以及回撤和存款负载。


MQL5 Cookbook: 怎样在设置/修改交易参数时避免错误
作为我们在系列前一篇文章,"MQL Cookbook: 在MetaTrader 5策略测试器中分析仓位属性"中EA交易工作的继续,我们将使用很多有用的函数,以及提高和优化已有的函数来增强它。这一次EA交易有可以在MetaTrader 5策略测试器中优化的外部参数,并且在某些方面组成了一个简单的交易系统。

继续迈进优化(第一部分):操控优化报告
这是第一篇致力于创建一套操控优化报告工具箱的文章,可从终端导入报告,并针对所获数据进行过滤和排序。 MetaTrader 5 允许下载优化结果,然而我们的目的是在优化报告中添加自己的数据。

形态搜索的暴力强推方式(第四部分):最小功能
本文基于上一篇文章中设定的目标,提出了一个改进的暴力强推版本。 我将尝试尽可能广泛地涵盖这个主题,并以该方法获取的设置来运行智能交易系统。 本文还附有一个新的程序版本。


MQL5 Cookbook: 使用不限数量的参数开发多币种EA交易
在本文中,我们将创建一种模式,它会使用一系列参数为交易系统作优化,而且允许不加数量限制的参数。交易品种的列表将在标准文本文件(*.txt)中创建,每个交易品种的输入参数也将存储于文件中。使用这种方法,我们将能够免除终端中对EA输入参数个数的限制。

自定义品种(符号):实践基础
本文专门介绍了程序化生成自定义品种(符号),这些自定义品种可用来演示一些显示报价的流行方法。 它描述的是一种建议的微创智能交易系统改编方案,可用在派生的自定义品种图表上,如同真实品种一样。 MQL 源代码随附于文后。


终端 MetaTrader 4 中的测试程序:应该了解
终端 MetaTrader 4 精心设计的界面是最前面的部分,但除此之外,它包括一个巧妙设计的策略测试程序。尽管 MetaTrader 4 作为交易终端的价值显而易见,但此测试程序的策略测试的质量只能在实践中进行评估。本文将介绍在 MetaTrader 4 中进行测试的优势和便捷性。


MQL5 Cookbook: 在MetaTrader 5策略测试器中分析仓位属性
我们将会展示一个来自前一篇文章,"MQL5 Cookbook: 自定义信息面板上的仓位属性"的修改版的EA交易。我们将会解决一些问题,包括从柱中获得数据,在当前交易品种中检查新柱事件,在文件中包含标准库中的交易类,创建一个函数来搜索交易信号,还有一个执行交易操作的函数以及在OnTrade()函数中判断交易事件。

连续前行优化 (第六部分): 自动优化器的逻辑部分和结构
我们之前曾研究过创建自动前行优化。 这次,我们将继续探究自动优化器工具的内部结构。 本文对于那些希望深入操控所创建项目并进行修改的人士,以及那些希望理解程序逻辑的人士来说都很有用处。 本文包含 UML 示意图,它能揭示项目的内部结构,以及对象之间的关系。 它还阐述了优化开始的过程,但未包含优化器实现过程的讲述。

梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法
在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。

连续前行优化 (第四部分): 优化管理器(自动优化器)
本文主要目的在于阐述运用我们的应用程序进行操控的机制及其能力。 因此,本文可视为有关如何运用该应用程序的指南。 它涵盖了所有可能的陷阱,以及应用程序用法的细节。


在算法交易中 KOHONEN 神经网络的实际应用 第二部分优化和预测
在设计使用 Kohonen 网络的通用工具的基础上,我们建立了优化EA参数的分析和选择系统,并探讨了时间序列的预测。在第一部分中,我们修正和改进了公开的神经网络类,增加了必要的算法。现在,是时候在实际应用中使用它们了。


MQL5 细则手册:保存基于指定标准的“EA 交易”的优化结果
我们继续有关 MQL5 编程的系列文章。这一次,我们来看一看如何获得“EA 交易”参数优化期间传递的每个优化的结果。将完成实现,以确保如果外部参数中指定的条件得到满足,对应的传递值将被写入文件。除了测试值,我们还将保存带来这样的结果的参数。

连续前行优化 (第五部分): 自动优化器项目概述和 GUI 的创建
本文深入讲述在 MetaTrader 5 终端里的前向优化。 在先前的文章中,我们研究了生成和过滤优化报告的方法,并开始分析负责优化过程的应用程序的内部结构。 自动优化器是作为 C# 应用程序实现的,并且拥有自己的图形界面。 第五篇文章专门论述了此图形界面的创建。


使用TesterWithdrawal() 函数模拟利润提取
本文讲述的是用于交易系统风险评估的TesterWithDrawal()函数的用法,即运行期间提取一部分资产。此外,还会讲到此函数对于策略测试程序中资产净值减少的计算算法的作用。在优化您的EA交易的时候,就会用到此函数。

改编版 MQL5 网格对冲 EA(第 II 部分):制作一款简单的网格 EA
在本文中,我们探讨了经典的网格策略,详解 MQL5 的智能交易系统的自动化,并初步分析回测结果。我们强调了该策略对高持有能力的需求,并概括了在未来分期分批优化距离、止盈和手数等关键参数的计划。该系列旨在提高交易策略效率,以及针对不同市场条件的适配性。

从市场里选择智能交易系统的正确途径
在本文中,我们将研究购买智能交易系统时应该注意的一些要点。 我们还将寻求提升盈利的方法,从而明智地花钱,并从付出中获取盈利。 此外,读完本文之后,您会发现,即便使用简单免费的产品也有可能赚到钱。


查找错误和记录
MetaEditor 5 具备调试功能。但是在编写 MQL5 程序时,您通常都希望不要显示个别的值,而是测试与在线工作期间出现的所有信息。如果日志文件内容庞大,所需信息快速便捷检索自动化的重要性就显而易见了。本文中,我们会研究 MQL5 程序中查找错误的方式以及记录方法。我们也会简单地记录到文件中,并了解一款方便日志查看的简单程序 - LogMon。

神经网络实验(第 2 部分):智能神经网络优化
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。

如何选择智能系统:拒绝一款交易机器人的 20 条强大准则
本文尝试回答这个问题:我们如何选择正确的智能系统? 哪些最适合我们的投资组合,我们如何过滤市场上提供的庞大交易机器人列表? 本文将介绍二十条明确而强大的准则来拒绝一款智能系统。 每条提出的准则都将得到很好的解释,从而帮助您做出更持久的决定,并为您建立一个更有前途的智能系统集合,从而赚取利润。

MetaTrader 中的多机器人:从单图表中启动多个机器人
在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。


MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失
无论您使用何种交易策略,总会有一个问题:怎样选择参数以保证未来的利润。本文提供了一个EA交易的实例,使您可以同时优化多个交易品种的参数,这种方法是未了减少参数的过度配合以及处理在研究中来自单个交易品种的数据不足的问题。

MQL5 简介(第 1 部分):算法交易新手指南
通过我们的 MQL5 编程新手指南,进入算法交易的迷人领域。在揭开自动化交易世界的神秘面纱之际,让我们探索支持MetaTrader 5 的语言 MQL5 的精髓。从了解基础知识到迈出编码的第一步,本文是您即使没有编程背景也能释放算法交易潜力的关键。加入我们的旅程,在令人兴奋的 MQL5 世界里,体验简单与复杂的结合吧。

连续前行优化 (第八部分): 程序改进和修复
根据本系列文章的用户和读者的评论和要求,程序已进行了修改。 本文包含一个自动优化器的新版本。 该版本实现了所需的功能,并提供了其他改进,这些是我运用该程序操作时发现的。