开发回放系统 — 市场模拟(第 18 部分):跳价和更多跳价(II)
显然,目前的衡量度与创建 1-分钟柱线的理想时间相距甚远。这是我们要率先解决的一件事。解决同步问题并不困难。也许这看起来很难,但实际上却很简单。在上一篇文章中,我们没有进行所需的调整,因为它的目的是解释如何把图表上创建 1-分钟柱线的跳价数据转移至市场观察窗口。
开发回放系统(第 63 部分):玩转服务(四)
在本文中,我们将最终解决一分钟柱形上的分时报价模拟问题,以便它们能够与真实分时报价共存。这将帮助我们避免将来出现问题。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。
开发回放系统 — 市场模拟(第 27 部分):智能交易系统项目 — C_Mouse 类
在本文中,我们将实现 C_Mouse 类。它提供了最高级别的编程能力。不过,说到高级或低级编程语言,并不是在代码中包含污言秽语或行话。它有其它含义。当我们谈论高级或低级编程时,我们意指对于其他程序员来说理解代码是多么容易或困难。
开发多币种 EA 交易(第 7 部分):根据前向时间段选择组
在此之前,我们曾对一组交易策略实例的选择进行过评估,目的是改进它们的联合运行结果,但这只是在对单个实例进行优化的同一时间段进行的。让我们拭目以待在前向时间段会发生什么。
开发多币种 EA 交易系统(第 16 部分):不同报价历史对测试结果的影响
正在开发中的 EA 预计在与不同经纪商进行交易时都会表现出良好的效果。但目前我们一直使用 MetaQuotes 模拟账户的报价进行测试。让我们看看我们的 EA 是否准备好使用与测试和优化期间使用的报价不同的交易账户。
开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。
开发回放系统 — 市场模拟(第 21 部分):外汇(II)
我们将继续构建一个在外汇市场工作的系统。为了解决这个问题,我们必须在加载以前的柱线之前首先声明加载跳价。这解决了问题,但同时迫使用户遵循配置文件中的某些结构,就个人而言,这对我来说没有多大意义。原因是,通过设计一个负责分析和执行配置文件中内容的程序,我们可以允许用户按任何顺序声明他需要的元素。
群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。
开发多币种 EA 交易(第 6 部分):自动选择实例组
在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。
开发回放系统 — 市场模拟(第 20 部分):外汇(I)
本文的最初目标不是涵盖外汇交易的所有可能性,而更是出于适配系统,如此您就至少可以执行一次市场回放。我们把模拟留待其它时刻。不过,如果我们没有跳价而仅有柱线的话,稍加努力,我们就可以模拟外汇市场中可能发生的交易。直到我们研究如何适配模拟器之前,情况一直如此。不经修改就尝试在系统内处理外汇数据会导致一系列错误。
MQL5 中的范畴论 (第 13 部分):数据库制程的日历事件
本文在 MQL5 中遵循范畴论实现秩序,研究如何在 MQL5 中结合数据库制程进行分类。我们介绍了当辨别交易相关的文本(字符串)信息时,如何把数据库制程概念与范畴论相结合。日历事件是焦点。
最负盛名的人工协作搜索算法的改进版本(AXSm)
在这里,我们将探讨 ACS 算法的演变:三种修改旨在改善收敛特性和算法效率。对最领先的优化算法之一进行修订改版。从数据矩阵修改到种群形成的革命性方法。
开发回放系统 — 市场模拟(第 19 部分):必要的调整
在此,我们要做好准备,如此当我们需要往代码里添加新函数时,就能顺滑轻松地发生。当前代码还不能涵盖或处理那些显著推进过程所必需的事情。我们需要将所有东西都结构化,以便能够以最小的工作量实现某些事情。如果我们正确地做好所有事情,我们就能得到一个真正通用的系统,可以轻松地适应任何需要处理的状况。
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)
本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。
开发多币种 EA 交易(第 19 部分):创建用 Python 实现的阶段
到目前为止,我们已经探讨了仅在标准策略测试器中启动顺序程序以优化 EA 的自动化。但是,如果我们想在两次启动之间使用其他方法对获得的数据进行一些处理呢?我们将尝试添加创建由用 Python 编写的程序执行的新优化阶段的功能。
化学反应优化 (CRO) 算法(第二部分):汇编和结果
在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。
开发回放系统 — 市场模拟(第 17 部分):跳价和更多跳价(I)
于此,我们将见识到如何实现一些非常有趣的东西,但同时也会因某些可能十分令人困惑的关键点而极其困难。可能发生的最糟糕的事情是,一些自诩专业人士的交易者却对这些概念在资本市场中的重要性一无所知。好吧,尽管我们在这里专注于编程,但理解市场交易中涉及的一些问题,对于我们将要实现的内容至关重要。
MQL5中的范畴论(第18部分):自然性四边形
本文通过介绍自然变换这一主题中的一个关键支柱,继续我们的范畴理论系列。我们研究看似复杂的定义,然后深入研究本系列“面包和黄油”的示例和应用程序;波动性预测。
人工蜂巢算法(ABHA):测试与结果
在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。
开发回放系统 — 市场模拟(第 25 部分):为下一步做准备
在本文中,我们将会完结开发回放和模拟系统的第一阶段。尊敬的读者,有了这样的成就,我确认该系统已经达到了高级水平,为引入新功能铺平了道路。目标是进一步丰富该系统,将其转变为研究和开发市场分析的强力工具。
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)
在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。
MQL5 中的范畴论 (第 15 部分):函子与图论
本文是以 MQL5 实现范畴论,着眼于函子之系列的续篇,但这次是作为图论和集合之间的桥梁。我们重新审视日历数据,尽管它在策略测试器中存在使用局限,但在相关性的帮助下,可利用函子来预测波动性。
开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)
在改进了C_Mouse类之后,我们可以专注于创建一个类,该类旨在为我们的分析创建一个全新的框架。我们不会使用继承或多态性来创建这个新类。相反,我们将改变,或者更好地说,在价格线中添加新的对象。这就是我们在这篇文章中要做的。在下一节中,我们将研究如何更改分析。所有这些都将在不更改C_Mouse类的代码的情况下完成。实际上,使用继承或多态性会更容易实现这一点。然而,还有其他方法可以达到同样的结果。
种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES
本文研究一套称为进化策略(ES)的优化算法。它们是最早使用进化原理来寻找最优解的种群算法之一。我们将针对传统的 ES 变体实现变更,并修改算法的测试函数和测试台方法。
开发回放系统(第 53 部分):事情变得复杂(五)
在本文中,我们将介绍一个很少有人了解的重要话题:定制事件。危险。这些要素的优缺点。对于希望成为 MQL5 或其他语言专业程序员的人来说,本主题至关重要。在此,我们将重点介绍 MQL5 和 MetaTrader 5。
开发回放系统 — 市场模拟(第 14 部分):模拟器的诞生(IV)
在本文中,我们将继续探讨模拟器开发的新阶段。 这次,我们会见到如何有效地创建随机游走类型的走势。 这种类型的走势非常引人入胜,因为它是构成资本市场上所发生一切的基础。 此外,我们将开始了解一些对于进行市场分析至关重要的概念。
自定义指标:为净额结算账户绘制部分入场、出场和反转交易
在本文中,我们将探讨在MQL5中创建指标的一种非标准方法。我们的目标不是专注于趋势或图表形态,而是管理我们自己的仓位,包括部分入场和出场。我们将广泛使用动态矩阵以及一些与交易历史和未平仓头寸相关的交易函数,以在图表上显示这些交易发生的位置。
开发回放系统(第 59 部分):新的未来
正确理解不同的想法可以让我们事半功倍。在本文中,我们将探讨为什么在服务与图表交互之前需要配置模板。此外,如果我们改进鼠标指标,这样我们就可以用它做更多的事情呢?
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择
让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
开发回放系统(第31部分):EA交易项目——C_Mouse类(五)
我们需要一个计时器,它可以显示距离回放/模拟运行结束还有多少时间。乍一看,这可能是一个简单快捷的解决方案。许多人只是尝试适应并使用交易服务器使用的相同系统。但有一件事是很多人在考虑这个解决方案时没有考虑的:对于回放,甚至更多的是模拟,时钟的工作方式不同。所有这些都使创建这样一个系统变得复杂。
MQL5 中的范畴论 (第 16 部分):多层感知器函子
本文是我们系列文章的第 16 篇,继续考察函子以及如何使用人工神经网络实现它们。我们偏离了迄今为止在该系列中所采用的方式,这涉及预测波动率,并尝试实现自定义信号类来设置入仓和出仓信号。
种群优化算法:二进制遗传算法(BGA)。第 I 部分
在本文中,我们将探讨二进制遗传和其它种群算法中所用的各种方法。我们将见识到算法的主要组成部分,例如选择、交叠和突变,以及它们对优化的影响。此外,我们还将研究数据表示方法,及其对优化结果的影响。
开发基于订单簿的交易系统(第一部分):指标
市场深度无疑是执行快速交易的一个非常重要的因素,特别是在高频交易(HFT)算法中。在本系列文章中,我们将探讨这种类型的交易事件,这些事件可以通过经纪商在许多可交易的交易品种上获得。我们将从一个指标开始,您可以在其中自定义直接显示在图表上的直方图的调色板、位置和大小。我们还将研究如何生成 BookEvent 事件,以在特定条件下测试指标。未来文章的其他可能主题包括如何存储价格分布数据以及如何在策略测试器中使用它。
血液遗传优化算法(BIO)
我向大家介绍我的新种群优化算法——血液遗传优化算法(Blood Inheritance Optimization,BIO),该算法的灵感源自人类血型遗传系统。在该算法中,每个解都有其自身的“血型”,这一血型决定了其进化方式。正如自然界中,孩子的血型是依据特定规则遗传而来,在BIO算法中,新解通过一套遗传与变异机制来获取自身特性。
开发回放系统 — 市场模拟(第 28 部分):智能交易系统项目 — C_Mouse 类 (II)
当人们开始创建第一个拥有计算能力的系统时,一切都需要工程师的参与,他们必须非常熟知该项目。我们谈论的是计算机技术的曙光,那个时代甚至没有用于编程的终端。随着它的发展,越来越多的人对能够创造一些东西感兴趣,涌现出新的思路和编程方式,取代了旧式风格的改变连接器位置。这就是第一个终端出现的时刻。