您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测
“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。
开发回放系统(第 66 部分):玩转服务(七)
在本文中,我们将实现第一个解决方案,该解决方案使我们能够确定何时在图表上出现新的柱形。此解决方案适用于各种情况。了解它的发展将有助于你掌握几个重要方面。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
人工协作搜索算法 (ACS)
人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。
开发回放系统(第 50 部分):事情变得复杂 (二)
我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。
开发回放系统(第 47 部分):Chart Trade 项目(六)
最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。
开发回放系统(第 65 部分):玩转服务(六)
在本文中,我们将研究如何在与回放/模拟应用程序结合使用时实现和解决鼠标指针问题。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
您应当知道的 MQL5 向导技术(第 23 部分):CNNs
卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。
大气云模型优化(ACMO):实战
在本文中,我们将继续深入研究大气云模型优化(ACMO)算法的实现。特别是,我们将讨论两个关键方面:云向低压区域的移动以及降雨模拟,包括液滴的初始化及其在云中的分布。我们还将研究其他在管理云的状态以及确保它们与环境相互作用方面发挥重要作用的方法。

开发回放系统(第 67 部分):完善控制指标
在本文中,我们将看看通过一点代码改进可以实现什么。这一改进旨在简化我们的代码,更多地使用 MQL5 库调用,最重要的是,使其在我们未来可能开发的其他项目中更加稳定、安全和易于使用。

开发回放系统(第 55 部分):控制模块
在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。

非洲水牛优化(ABO)
本文介绍了非洲水牛优化(ABO)算法,这是一种于2015年开发的元启发式方法,基于这些动物的独特行为。文章详细描述了算法实现的各个阶段及其在解决复杂问题时的效率,这使得它成为优化领域中一个有价值的工具。

开发回放系统(第 64 部分):玩转服务(五)
在本文中,我们将介绍如何修复代码中的两个错误。然而,我将尝试以一种有助于初学者程序员理解事情并不总是如你所愿的方式解释它们。无论如何,这是一个学习的机会。此处提供的内容仅用于教育目的。本应用程序不应被视为最终文件,其目的除了探讨所提出的概念之外,不应有任何其它用途。

人工喷淋算法(ASHA)
本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索
神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归
线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。

开发回放系统(第 60 部分):玩转服务(一)
很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。

ALGLIB库优化方法(第一部分)
在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。

原子轨道搜索(AOS)算法:改进与拓展
在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。