
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习
强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。

美元和欧元指数图表 — MetaTrader 5 服务示例
我们将以 MetaTrader 5 服务为例,探讨创建和更新美元指数 (USDX) 和欧元指数 (EURX) 图表。启动服务时,我们将检查所需合成工具的存在,必要时创建它,并将其放置在市场观察窗口中。随后将创建合成工具的分钟和分时报价历史记录,然后创建所创建工具的图表。

在任何市场中获得优势(第五部分):联邦储备经济数据库(FRED)欧元兑美元( EURUSD)可替代数据
在今天的讨论中,我们使用了圣路易斯联邦储备银行(St. Louis Federal Reserve)提供的关于广义美元指数以及其他一系列宏观经济指标的可替代日数据,来预测欧元兑美元(EURUSD)未来的汇率。遗憾的是,尽管数据似乎具有近乎完美的相关性,但我们在模型准确性方面未能实现任何实质性提升,这可能暗示投资者最好采用常规的市场价格数据。

从基础到中级:BREAK 和 CONTINUE 语句
在本文中,我们将学习如何在循环中使用 RETURN、BREAK 和 CONTINUE 语句。了解每个语句在循环执行流程中的作用对于处理更复杂的应用程序非常重要。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

您应当知道的 MQL5 向导技术(第 35 部分):支持向量回归
支持向量回归是一种理想主义的途径,寻找最能描述两组数据之间关系的函数或“超平面”。我们尝试在 MQL5 向导的自定义类内利用这一点来进行时间序列预测。

神经网络实践:第一个神经元
在本文中,我们将开始构建一些简单而不起眼的东西:神经元。我们将使用非常少量的 MQL5 代码对其进行编程。神经元在我的测试中表现良好。让我们回到这一系列关于神经网络的文章中,了解一下我在说什么。

使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商
加入我们的讨论,了解如何利用人工智能(AI)优化您的仓位规模和订单数量,以最大化您的投资组合回报。我们将展示如何通过算法识别一个最优的投资组合,并根据您的回报预期或风险承受能力来调整投资组合。在本次讨论中,我们将使用SciPy库和MQL5语言,利用所拥有的全部数据创建一个最优且多样化的投资组合。

HTTP和Connexus(第2部分):理解HTTP架构和库设计
本文探讨了HTTP协议的基础知识,涵盖了主要方法(GET、POST、PUT、DELETE)、状态码以及URL的结构。此外,还介绍了Conexus库的构建起点,以及CQueryParam和CURL类,这些类用于在HTTP请求中操作URL和查询参数。

基于MQL5的订单剥头皮交易系统
这款MetaTrader 5 EA实现了基于订单流的剥头皮交易策略,并配备了高级风险管理功能。它使用多种技术指标,通过订单的不平衡性来识别交易机会。回测结果显示该策略具有潜在的盈利能力,但同时也突显了需要进一步优化的必要性,尤其是在风险管理和交易结果比率方面。该策略适合经验丰富的交易者,但在实际部署之前,需要进行彻底的测试和深入理解。

重构MQL5中的经典策略(第三部分):富时100指数预测
在本系列文章中,我们将重新审视一些知名的交易策略,以探究是否可以利用AI来改进这些策略。在今天的文章中,我们将研究富时100指数,并尝试使用构成该指数的部分个股来预测该指数。

交易中的神经网络:统一轨迹生成模型(UniTraj)
理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。

使用MQL5和Python构建自优化的EA(第四部分):模型堆叠
今天,我们将展示如何构建能够从自身错误中学习的AI驱动的交易应用程序。我们将展示一种称为堆叠(stacking)的技术,我们使用2个模型来做出1个预测。第一个模型通常是较弱的学习器,而第二个模型通常是更强大的模型,它学习较弱学习器的残差。我们的目标是创建一个模型集成,以期获得更高的准确性。

开发多币种 EA 交易(第 17 部分):为真实交易做进一步准备
目前,我们的 EA 使用数据库来获取交易策略单个实例的初始化字符串。然而,这个数据库相当大,包含许多实际 EA 操作不需要的信息。让我们尝试在不强制连接到数据库的情况下确保 EA 的功能。

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入
受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。

大气云模型优化(ACMO):理论
本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。

使用PSAR、Heiken Ashi和深度学习进行交易
本项目探索深度学习与技术分析的融合,用于在外汇市场测试交易策略。使用Python脚本进行快速实验,结合ONNX模型和传统指标(如PSAR、SMA和RSI)来预测欧元/美元(EUR/USD )的走势。之后,MQL5脚本将此策略引入实时环境,利用历史数据和技术分析帮助交易者做出明智的交易决策。回测结果表明,该策略秉持保守且稳健的运作理念,始终将风险管控置于首位,追求持续稳定的收益增长模式,摒弃激进逐利的行为。

您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心
高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。

从基础到中级:WHILE 和 DO WHILE 语句
在本文中,我们将对第一个循环语句进行实用且非常直观的介绍。尽管许多初学者在面对创建循环的任务时感到害怕,但知道如何正确安全地完成它只能通过经验和练习来实现。但谁知道呢,也许我可以通过向你展示在代码中使用循环时的主要问题和预防措施来减少你的麻烦和痛苦。

在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)
在本文中,我们将专注于使用MQL5为交易管理员面板的图形用户界面(GUI)进行视觉样式设计与优化。我们将探讨MQL5中可用的各种技术和功能,这些技术和功能允许对界面进行定制和优化,确保它既能满足交易者的需求,又能保持吸引人的外观。

您应当知道的 MQL5 向导技术(第 32 部分):正则化
正则化是一种在贯穿神经网络各层应用离散权重,按比例惩罚损失函数的形式。我们来考察其重要性,对于一些不同的正则化形式,能够在配合向导组装的智能系统运行测试。

构建蜡烛图趋势约束模型(第8部分):EA开发(II)
构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。

创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram
在本文中,我们创建一个 MQL5 EA 交易,将图表截图编码为图像数据并通过 HTTP 请求将其发送到 Telegram 聊天。通过集成图片编码和传输,我们直接在 Telegram 内通过可视化交易洞察增强了现有的 MQL5-Telegram 系统。

将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析
在我们关于将 MQL5 与数据处理包集成的系列文章中,我们深入研究了机器学习和预测分析的强大组合。我们将探索如何将 MQL5 与流行的机器学习库无缝连接,以便为金融市场提供复杂的预测模型。

因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例
我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数
损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。

从基础到中级:IF ELSE
在本文中,我们将讨论如何使用 IF 操作符及其伴随者 ELSE。这个语句是所有编程语言中最为重要且最有意义的语句。然而,尽管它易于使用,但如果我们没有使用它的经验以及与之相关的概念,它有时会令人困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

在Python和MQL5中应用局部特征选择
本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。

量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)
本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。

射箭算法(Archery Algorithm, AA)
本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。

开发回放系统(第 61 部分):玩转服务(二)
在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。

Connexus入门(第一部分):如何使用WebRequest函数?
本文是‘Connexus’库开发系列的开篇之作,旨在为MQL5环境下的HTTP请求提供便利支持。该项目的目的是为终端用户提供这个机会,并展示如何使用这个辅助库。我打算尽可能地简化,以便于学习,从而为进一步开发提供可能性。