MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。
preview
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调

随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
从基础到中级:浮点数

从基础到中级:浮点数

本文简要介绍浮点数的概念。由于这篇文章非常复杂,请仔细阅读,不要期望很快掌握浮点数系统。随着时间的推移,当你获得使用它的经验时,它才会变得清晰。但本文将帮助您理解为什么您的应用程序有时会产生与预期不同的结果。
preview
交易中的神经网络:使用小波变换和多任务注意力的模型

交易中的神经网络:使用小波变换和多任务注意力的模型

我们邀请您探索一个结合小波变换和多任务自注意力模型的框架,旨在提高波动市场条件下预测的响应能力、和准确性。小波变换可将资产回报分解为高频和低频,精心捕捉长期市场趋势、和短期波动。
preview
在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

在MQL5中构建自优化智能交易系统(EA)(第五部分):自适应交易规则

如何完美使用指标的原则,并不总是易于遵循。在市场行情较为平稳的情况下,指标可能会意外地给出不构成交易条件的信号,导致算法交易者错失交易机会。本文将提出一个潜在的解决方案,我们将讨论如何构建能够根据现有市场数据调整其交易规则的交易应用程序。
preview
精通日志记录(第五部分):通过缓存和轮转优化处理程序

精通日志记录(第五部分):通过缓存和轮转优化处理程序

本文通过为处理器添加格式化器、引入用于管理执行周期的 CIntervalWatcher 类、以及采用缓存和文件轮转进行优化,并辅以性能测试和实际示例,从而改进了该日志库。通过这些改进,我们确保了一个高效、可扩展且能适应不同开发场景的日志系统。
preview
创建MQL5交易管理员面板(第九部分):代码组织(1)

创建MQL5交易管理员面板(第九部分):代码组织(1)

这次将深入探讨处理大型代码库时遇到的挑战。我们将探索在MQL5中进行代码组织的最佳实践,并采用一种实用方法来提升我们交易管理面板源代码的可读性和可扩展性。此外,我们致力于开发可复用的代码组件,这些组件有可能为其他开发者在其算法开发过程中带来益处。请继续阅读并参与讨论。
preview
价格行为分析工具包开发(第10部分):外部资金流(二)VWAP

价格行为分析工具包开发(第10部分):外部资金流(二)VWAP

通过我们的综合指南,掌握VWAP的强大力量!学习如何使用MQL5和Python将VWAP分析集成到您的交易策略中。最大化您的市场洞察力,并改善您今天的交易决策。
preview
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法

基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法

在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
preview
开发回放系统(第 78 部分):新 Chart Trade(五)

开发回放系统(第 78 部分):新 Chart Trade(五)

在本文中,我们将研究如何实现部分接收方代码。在这里我们将实现一个 EA 交易来测试和了解协议交互是如何工作的。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
交易中的神经网络:搭配预测编码的混合交易框架(终篇)

交易中的神经网络:搭配预测编码的混合交易框架(终篇)

我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。
preview
MQL5 交易工具包(第 4 部分):开发历史管理 EX5 库

MQL5 交易工具包(第 4 部分):开发历史管理 EX5 库

通过详细的分步方法创建扩展的历史管理 EX5 库,学习如何使用 MQL5 检索、处理、分类、排序、分析和管理已平仓头寸、订单和交易历史。
preview
价格行为分析工具包开发(第11部分):基于Heikin Ashi(平均K线)信号的智能交易系统(EA)

价格行为分析工具包开发(第11部分):基于Heikin Ashi(平均K线)信号的智能交易系统(EA)

MQL5为开发者提供了无限可能,助您构建高度定制化的自动化交易系统。您是否知道,它甚至能执行复杂的数学运算?本文将介绍如何将日本Heikin-Ashi(平均K线)技术转化为自动化交易的策略。
preview
迁移至 MQL5 Algo Forge(第 4 部分):使用版本和发布

迁移至 MQL5 Algo Forge(第 4 部分):使用版本和发布

我们将继续开发 Simple Candles 和 Adwizard 项目,同时还将描述使用 MQL5 Algo Forge 版本控制系统和仓库的细节。
preview
从头开始以 MQL5 实现 SHA-256 加密算法

从头开始以 MQL5 实现 SHA-256 加密算法

长期以来,构建无 DLL 的加密货币兑换集成一直是一个挑战,但该解决方案为直接市场对接提供了一个完整的框架。
preview
基于LSTM的趋势预测在趋势跟踪策略中的应用

基于LSTM的趋势预测在趋势跟踪策略中的应用

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
preview
MQL5 简介(第 10 部分):MQL5 中使用内置指标的初学者指南

MQL5 简介(第 10 部分):MQL5 中使用内置指标的初学者指南

本文介绍如何使用 MQL5 中的内置指标,重点介绍如何使用基于项目的方法创建基于 RSI 的 EA 交易。您将学习获取和利用 RSI 值、处理流动性清扫以及使用图表对象增强交易可视化。此外,本文强调了有效的风险管理,包括设定基于百分比的风险、实施风险回报率以及应用风险修改来确保利润。
preview
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。 这种方法确保了自动化交易中的精确性和适应性。
preview
以 MQL5 实现强化分类任务的融汇方法

以 MQL5 实现强化分类任务的融汇方法

在本文中,我们讲述以 MQL5 实现若干融汇分类器,并讨论了它们在不同状况下的功效。
preview
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。
preview
开发回放系统(第 77 部分):新 Chart Trade(四)

开发回放系统(第 77 部分):新 Chart Trade(四)

在本文中,我们将介绍创建通信协议时需要考虑的一些措施和预防措施。这些都是非常简单明了的事情,所以我们在本文中不会详细介绍。但要了解会发生什么,您需要了解文章的内容。
preview
集成学习模型中的门控机制

集成学习模型中的门控机制

在本文中,我们继续探讨集成模型,重点讨论“门控”的概念,尤其是门控如何通过整合模型输出来提升预测准确性或模型泛化能力。
preview
3D 柱线上的趋势强度和方向指标

3D 柱线上的趋势强度和方向指标

我们将研究一种市场趋势分析新方法,基于市场微观结构的三维可视化、及张量分析。
preview
逆公允价值缺口(IFVG)交易策略

逆公允价值缺口(IFVG)交易策略

当价格回到先前确定的公允价值缺口位置,且未表现出预期的支撑或阻力反应,而是无视该缺口时,便出现了逆公允价值缺口(IFVG)。这种“无视”现象可能预示着市场方向的潜在转变,并为反向交易提供优势。在本文中,我将介绍自己开发的量化方法,以及如何将IFVG作为一种策略,应用于MetaTrader 5智能交易系统(EA)中。
preview
从基础到中级:定义(二)

从基础到中级:定义(二)

在本文中,我们将继续了解 #define 指令,但这次我们将重点关注它的第二种使用形式,即创建宏。由于这个主题可能有点复杂,我们决定使用我们已经研究了一段时间的应用程序。希望您喜欢今天的文章。
preview
精通日志记录(第四部分):将日志保存到文件

精通日志记录(第四部分):将日志保存到文件

在本文中,我将向您讲解基本的文件操作,以及如何配置一个灵活的自定义处理器。我们将更新 CLogifyHandlerFile 类,以将日志直接写入文件。我们将通过在 EURUSD 上模拟一周的策略来进行性能测试,在每个 tick 生成日志,总耗时为 5 分 11 秒。其结果将在未来的文章中进行比较,届时我们将实现一个缓存系统来提升性能。
preview
从基础到中级:定义(一)

从基础到中级:定义(一)

在这篇文章中,我们将做一些许多人会觉得奇怪和完全脱离上下文的事情,但如果使用得当,这将使你的学习更加有趣:我们将能够根据这里显示的内容构建非常有趣的东西。这将使您更好地理解 MQL5 语言的语法。此处提供的材料仅用于教育目的。它不应以任何方式被视为最终应用程序。其目的不是探索所提出的概念。
preview
黑洞算法(BHA)

黑洞算法(BHA)

黑洞算法(BHA)利用黑洞引力原理来优化解。在本文中,我们将考察 BHA 如何在避免局部极端情况的同时,吸引最佳解,以及为什么该算法已成为解决复杂问题的强大工具。学习简单的思路如何在优化世界带来令人印象深刻的结果。
preview
循环孤雌生殖算法(CPA)

循环孤雌生殖算法(CPA)

本文提出了一种新的群体优化算法——循环孤雌生殖算法(CPA),其灵感源自蚜虫独特的生殖策略。该算法融合了两种生殖机制:孤雌生殖(无性繁殖)与有性生殖,并借助蚜虫的群体结构以及群体间的迁徙能力。算法的核心特点包括:在不同生殖策略之间自适应切换和通过“迁飞”机制实现群体间的信息交换。
preview
开发回放系统(第 76 部分):新 Chart Trade(三)

开发回放系统(第 76 部分):新 Chart Trade(三)

在本文中,我们将看看上一篇文章中缺少的 DispatchMessage 代码是如何工作的。我们还会介绍下一篇文章的主题。因此,在继续下一个主题之前,了解这段代码的工作原理非常重要。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
preview
在训练中激活神经元的函数:快速收敛的关键?

在训练中激活神经元的函数:快速收敛的关键?

本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
preview
开发多币种 EA 交易(第 20 部分):整理自动项目优化阶段的输送机(一)

开发多币种 EA 交易(第 20 部分):整理自动项目优化阶段的输送机(一)

我们已经创建了不少有助于安排自动优化的组件。在创建过程中,我们遵循了传统的循环结构:从创建最小的工作代码到重构和获得改进的代码。是时候开始清理我们的数据库了,这也是我们正在创建的系统中的一个关键组件。
preview
您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

柔性参与者评论者是一种利用 3 个神经网络的强化学习算法。一名参与者网络和 2 个评论者网络。这些机器学习模型按主从伙伴关系配对,其中所建模评论者能提升参与者网络的预测准确性。在这些序列中引入 ONNX 的同时,我们探讨了如何将这些思路作为由向导汇编的智能系统的自定义信号,推进测试。
preview
量子计算与交易:价格预测的新方法

量子计算与交易:价格预测的新方法

本文介绍了一种利用量子计算预测金融市场价格走势的创新方法。该方法主要应用量子相位估计(QPE)算法来寻找价格模式的原型,从而使交易者能够显著加快市场数据分析的速度。
preview
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
preview
交易中的趋势准则

交易中的趋势准则

趋势是许多交易策略的重要组成部分。在本文中,我们将考察一些用来识别趋势及其特征的工具。理解并正确解释趋势,能够显著提升交易效率,并将风险最小化。
preview
从基础到中级:递归

从基础到中级:递归

在本文中,我们将探讨一个非常有趣且颇具挑战性的编程概念,尽管应该非常谨慎地对待它,因为它的误用或误解会将相对简单的程序变成不必要的复杂程序。但是,当正确使用并完全适应同样合适的情况时,递归成为解决问题的绝佳盟友,否则这些问题会更加费力和耗时。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
人工部落算法(ATA)

人工部落算法(ATA)

文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
preview
重新定义MQL5与MetaTrader 5指标

重新定义MQL5与MetaTrader 5指标

MQL5中一种创新的指标信息收集方法,使开发者能够向指标传递自定义输入参数以进行即时计算,从而实现了更灵活、更高效的数据分析。这种方法在算法交易中尤为实用,因为它能突破传统限制,增强对指标所处理信息的掌控力。