MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
经济预测:探索 Python 的潜力

经济预测:探索 Python 的潜力

如何使用世界银行的经济数据进行预测?当你将人工智能模型和经济学结合起来时会发生什么?
preview
您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习

蒙特卡洛是我们正在研究的第四种不同的强化学习算法,目的是探索它在向导汇编智能交易系统中的实现。尽管它锚定在随机抽样,但它提供了我们可以利用的多种模拟方法。
preview
周期与交易

周期与交易

本文将探讨如何在交易中运用周期理论。我们将考虑基于周期模型构建交易策略。
preview
市场轮廓指标

市场轮廓指标

在本文中,我们将探讨市场轮廓指标。我们将探究这个名称背后隐藏的内容,尝试理解其运行原理,并分析其程序代码(MarketProfile)。
preview
算术优化算法(AOA):从AOA到SOA(简单优化算法)

算术优化算法(AOA):从AOA到SOA(简单优化算法)

在本文中,我们介绍了基于简单算术运算(加法、减法、乘法和除法)的算术优化算法(AOA)。这些基本的数学运算是为各种问题寻找最优解的基础。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器

本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。
preview
使用 Python 分析天气对农业国家货币的影响

使用 Python 分析天气对农业国家货币的影响

天气与外汇之间有什么关系?传统经济理论长期忽视天气对市场行为的影响。但一切都已改变。让我们尝试找出天气条件与农业货币在市场上的走势之间的联系。
preview
使用 MetaTrader 5 在 Python 中查找自定义货币对形态

使用 MetaTrader 5 在 Python 中查找自定义货币对形态

外汇市场是否存在重复的形态和规律?我决定使用 Python 和 MetaTrader 5 创建自己的形态分析系统。一种数学和编程的共生关系,用于征服外汇。
preview
交易中的神经网络:节点-自适应图形表征(NAFS)

交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
preview
MQL5中的逐步特征选择

MQL5中的逐步特征选择

在本文中,我们介绍一个在MQL5中实现的逐步特征选择算法的改进版本。这种方法基于Timothy Masters在其著作《C++和CUDA C中的现代数据挖掘算法》中概述的技术。
preview
使用Python与MQL5进行多个交易品种分析(第二部分):主成分分析在投资组合优化中的应用

使用Python与MQL5进行多个交易品种分析(第二部分):主成分分析在投资组合优化中的应用

交易账户风险管理是所有交易者面临的共同挑战。我们如何在MetaTrader 5中开发能够动态学习不同交易品种的高、中、低风险模式的交易应用?通过主成分分析(PCA),我们可以更有效地控制投资组合的方差。本文将演示如何从MetaTrader 5获取的市场数据中,训练出这三种风险模式的交易模型。
preview
MQL5 中的 SQLite 功能示例:按交易品种及 Magic 编码展示交易统计信息的仪表盘

MQL5 中的 SQLite 功能示例:按交易品种及 Magic 编码展示交易统计信息的仪表盘

本文将介绍如何创建一个指标型仪表盘,按账户、交易品种及交易策略展示交易统计信息。我们将以官方文档及数据库相关文章中的示例为基础,逐步实现完整程序。
preview
使用 MetaTrader 5 的 Python 高频套利交易系统

使用 MetaTrader 5 的 Python 高频套利交易系统

在本文中,我们将创建一个在经纪商眼中仍然合法的套利系统,在外汇市场上创建数千个合成价格,对其进行分析,并成功交易以获取利润。
preview
您应当知道的 MQL5 向导技术(第 44 部分):平均真实范围(ATR)技术指标

您应当知道的 MQL5 向导技术(第 44 部分):平均真实范围(ATR)技术指标

ATR 振荡指标是一款非常流行的指标,权当波动率代表,尤其是在交易量数据稀缺的外汇市场当中。我们以形态为基础来验证这一点,就如我们对先前指标所做那样,并分享策略和测试报告,致谢 MQL5 向导库的类和汇编。
preview
构建K线趋势约束模型(第九部分):多策略EA(2)

构建K线趋势约束模型(第九部分):多策略EA(2)

理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
preview
如何使用 MetaTrader 和 Google Sheets 创建交易日志

如何使用 MetaTrader 和 Google Sheets 创建交易日志

使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
preview
基于主成分的特征选择与降维

基于主成分的特征选择与降维

本文深入探讨了改进型前向选择成分分析(Forward Selection Component Analysis,FSCA)算法的实现,该算法灵感源自Luca Puggini和Sean McLoone在《前向选择成分分析:算法与应用》一文中所提出的研究。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

如何将“聪明钱”概念(OB)与斐波那契指标相结合,实现最优进场策略

SMC(订单块)是机构交易者发起大规模买入或卖出的关键区域。当价格出现显著波动后,借助斐波那契数字可识别从近期波段高点至波段低点的潜在回撤,从而锁定最佳进场位。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
创建一个基于布林带PIRANHA策略的MQL5 EA

创建一个基于布林带PIRANHA策略的MQL5 EA

在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
preview
人工喷淋算法(ASHA)

人工喷淋算法(ASHA)

本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。
preview
交易中的神经网络:对比形态变换器

交易中的神经网络:对比形态变换器

对比变换器在设计上基于单根烛条水平和整个形态来分析行情。这有助于提升行情趋势建模的品质。甚至,运用对比学习来统调烛条和形态的表示、促进自我调节,并提升预测的准确性。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
从新手到专家:MQL5中的协作式调试指南

从新手到专家:MQL5中的协作式调试指南

问题解决法能为掌握复杂技能(如MQL5编程)构建高效路径。该方法让您在专注攻克问题的同时,潜移默化地提升技能水平。解决的难题越多,大脑积累的专业知识就越深厚。就我个人而言,调试是精通编程最有效的途径。本文将带你逐步梳理代码清理流程,并探讨将杂乱程序转化为简洁高效代码的核心技巧。阅读本文,洞悉其中的宝贵见解。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
精通日志记录(第一部分):MQL5中的基础概念与入门步骤

精通日志记录(第一部分):MQL5中的基础概念与入门步骤

欢迎开启另一段探索之旅!本文是一个特别系列的开篇之作,我们将逐步创建一个专为MQL5语言开发者量身定制的日志操作库。
preview
在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

在MQL5中创建交易管理员面板(第七部分):可信任用户、密码恢复与加密技术

每次刷新图表、通过管理面板EA添加新交易品种或重启终端时触发的安全提示,可能会让人感觉繁琐。在本次讨论中,我们将探索并实现一项功能,该功能通过跟踪登录尝试次数来识别可信用户。在达到一定次数的失败尝试后,应用程序将切换至高级登录流程,该流程还为可能忘记密码的用户提供密码恢复功能。此外,我们还将介绍如何将加密技术有效集成到管理面板中,以增强安全性。
preview
从基础到中级:数组和字符串(三)

从基础到中级:数组和字符串(三)

本文从两个方面进行探讨。首先,标准库如何将二进制值转换为其他表示形式,如八进制、十进制和十六进制。其次,我们将讨论如何使用我们已经获得的知识,根据秘密短语确定密码的宽度。
preview
借助成交量精准洞悉交易动态:超越传统OHLC图表

借助成交量精准洞悉交易动态:超越传统OHLC图表

一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
preview
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
preview
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习

SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
preview
将互信息作为渐进特征选择的准则

将互信息作为渐进特征选择的准则

在本文中,我们展示了基于最优预测变量集与目标变量之间互信息渐进特征选择的MQL5实现。
preview
开发回放系统(第 68 部分):取得正确的时间(一)

开发回放系统(第 68 部分):取得正确的时间(一)

今天,我们将继续努力,让鼠标指针告诉我们在流动性较低期间,一根柱形上还剩下多少时间。尽管乍一看似乎很简单,但实际上这项任务要困难得多。这涉及一些我们必须克服的障碍。因此,为了理解以下部分,您必须很好地理解子系列第一部分的材料。
preview
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
preview
价格行为分析工具包开发(第二部分):分析注释脚本

价格行为分析工具包开发(第二部分):分析注释脚本

秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
preview
DoEasy.服务函数(第 3 部分):外包线形态

DoEasy.服务函数(第 3 部分):外包线形态

在本文中,我们将开发 DoEasy 库中的外包线(Outside Bar)价格行为形态,并优化访问价格形态管理的方法。此外,我们将修复在库测试中发现的错误和缺点。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
交易中的神经网络:具有相对编码的变换器

交易中的神经网络:具有相对编码的变换器

自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。