
Эксперименты с нейросетями (Часть 4): Шаблоны
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)
В рассмотренных ранее моделях обучения с подкреплением мы использовали различные варианты сверточных сетей, которые способны идентифицировать различные объекты в исходных данных. Основное преимущество сверточных сетей в способности идентифицировать объекты вне зависимости от их расположением. В тоже время, сверточные сети не всегда справляются с различными деформациями объектов и шумом. Но эти проблемы способна решить реляционная модель.

Как построить советник, работающий автоматически (Часть 08): OnTradeTransaction
В этой статье я покажу вам, как использовать систему обработки событий, для быстрой и лучшей обработки вопросов, связанных с системой ордеров, чтобы советник работал быстрее. Таким образом, ему не придется постоянно искать информацию.

Как построить советник, работающий автоматически (Часть 07): Виды счетов (II)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме. Трейдеру всегда необходимо быть в курсе того, что делает автоматический советник, чтобы, если он «сойдет с рельсов», как можно быстрее удалить его с графика, прекратить таким образом его работу, и взять ситуацию под свой контроль.

Как построить советник, работающий автоматически (Часть 06): Виды счетов (I)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. Пока наш советник может работать в любой ситуации, но он ещё не готов к автоматизации, поэтому нам нужно проработать несколько моментов.

Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5
Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.

Как построить советник, работающий автоматически (Часть 05): Ручные триггеры (II)
Сегодня мы рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. В конце предыдущей статьи я подумал, что было бы уместно разрешить использование советника вручную хотя бы на время.

Как построить советник, работающий автоматически (Часть 04): Ручные триггеры (I)
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме.

Как построить советник, работающий автоматически (Часть 03): Новые функции
Сегодня вы научитесь создавать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье мы начали разрабатывать систему ордеров, которой будем пользоваться в автоматическом советнике. Однако мы создали только одну из необходимых функций или процедур.

Как построить советник, работающий автоматически (Часть 02): Начинаем писать код
Сегодня рассмотрим, как создать советник, который просто и безопасно работает в автоматическом режиме. В предыдущей статье я вам представил первые шаги, которые необходимо понять перед тем, как приступать к созданию советника, торгующего автоматически. Мы всё это просмотрели там.

Как построить советник, работающий автоматически (Часть 01): Концепции и структуры
Сегодня посмотрим, как создать советник, просто и безопасно работающий в автоматическом режиме.

Эксперименты с нейросетями (Часть 3): Практическое применение
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)
Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.

Нелинейные индикаторы
В этой статье мы сделаем попытку рассмотреть некоторые способы построения нелинейных индикаторов и их использование в трейдинге. В торговой платформе MetaTrader довольно много индикаторов, которые используют нелинейные подходы.

Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении
Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.

Нейросети — это просто (Часть 32): Распределенное Q-обучение
В одной из статей данной серии мы с вами уже познакомились с методом Q-обучения. Данный метод усредняет вознаграждения за каждое действие. В 2017 году были представлены сразу 2 работы, в которых большего успеха добиваются при изучении функции распределения вознаграждения. Давайте рассмотрим возможность использования подобной технологии для решения наших задач.

Магия временных торговых интервалов с инструментом Frames Analyzer
Что такое Frames Analyzer? Это подключаемый модуль к любому торговому эксперту для анализа фреймов оптимизации во время оптимизации параметров в тестере стратегий, а также вне тестера посредством чтения MQD-файла или базы данных, которая создаётся сразу после оптимизации параметров. Вы сможете делиться этими результатами оптимизации с другими пользователями, у которых есть инструмент Frames Analyzer, чтобы обсудить полученные результаты оптимизации вместе.

Нейросети — это просто (Часть 31): Эволюционные алгоритмы
В предыдущей статье мы начали изучение безградиентных методов оптимизации. И познакомились с генетическим алгоритмом. Сегодня мы продолжаем начатую тему. И рассмотрим ещё один класс эволюционных алгоритмов.

Разработка торгового советника с нуля (Часть 22): Новая система ордеров (V)
Сегодня мы продолжим разработку новой системы ордеров. Внедрить новую систему совсем непросто: мы часто сталкиваемся с проблемами, которые сильно усложняют процесс. Когда эти проблемы появляются, нам приходится останавливаться и заново анализировать направление, по которому мы движемся.

Нейросети — это просто (Часть 30): Генетические алгоритмы
Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.

Нейросети — это просто (Часть 29): Алгоритм актор-критик с преимуществом (Advantage actor-critic)
В предыдущих статьях данной серии мы познакомились с 2-мя алгоритмами обучения с подкреплением. Каждый из них обладает своими достоинствами и недостатками. Как часто бывает в таких случаях, появляется идея совместить оба метода в некий алгоритм, который бы вобрал в себя лучшее из двух. И тем самым компенсировать недостатки каждого из них. О таком методе мы и поговорим в этой статье.

Нейросети — это просто (Часть 28): Policy gradient алгоритм
Продолжаем изучение методов обучение с подкреплением. В предыдущей статье мы познакомились с методом глубокого Q-обучения. В котором мы обучаем модель прогнозирования предстоящей награды в зависимости от совершаемого действия в конкретной ситуации. И далее совершаем действие в соответствии с нашей политикой и ожидаемой наградой. Но не всегда возможно аппроксимировать Q-функцию. Или её аппроксимация не даёт желаемого результата. В таких случаях используют методы аппроксимации не функции полезности, а на прямую политику (стратегию) действий. Именно к таким методам относится policy gradient.

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning
В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей
Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.

Разработка торгового советника с нуля (Часть 21): Новая система ордеров (IV)
Наконец-то визуальная система заработает... хотя пока не до конца. Здесь мы закончим вносить основные изменения, которых будет не мало, но они все необходимы, и вся работа будет достаточно интересной.

Разработка торгового советника с нуля (Часть 20): Новая система ордеров (III)
Продолжим внедрение новой системы ордеров. Создание такой системы требует хорошего владения MQL5, а также понимания того, как на самом деле работает платформа MetaTrader 5 и какие ресурсы она нам предоставляет.

Разработка торгового советника с нуля (Часть 19): Новая система ордеров (II)
В данной статье мы будем разрабатывать графическую систему ордеров вида «посмотрите, что происходит». Следует сказать, что мы не начнем с нуля, а модифицируем существующую систему, добавив еще больше объектов и событий на график торгуемого нами актива.

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)
В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.

Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Разработка торгового советника с нуля (Часть 18): Новая система ордеров (I)
Это первая часть новой системы ордеров. С тех пор, как мы начали создавать документацию данного советника в наших статьях, он претерпел различные изменения и улучшения, сохраняя при этом ту же модель системы ордеров на графике.

Нейросети — это просто (Часть 20): Автоэнкодеры
Мы продолжаем изучение алгоритмов обучения без учителя. Возможно, у читателя может возникнуть вопрос об соответствии последних публикаций теме нейронных сетей. В новой статье мы возвращаемся к использованию нейронных сетей.

Индикатор CCI. Модернизация и новые возможности
В этой статье мы рассмотрим возможность модернизации индикатора CCI. Кроме того, будет представлен пример модификации этого индикатора.

Нейросети — это просто (Часть 19): Ассоциативные правила средствами MQL5
Продолжаем тему поиска ассоциативных правил. В предыдущей статье мы рассмотрели теоретические аспекты данного типа задач. В этой статье я продемонстрирую реализацию метода FP-Growth средствами MQL5. А также мы протестируем нашу реализацию на реальных данных.

Разработка торгового советника с нуля (Часть 13): Время и торговля (II)
Сегодня мы построим вторую часть системы Times & Trade для анализа рынка. В предыдущей статье "Times & Trade (I)" мы рассмотрели альтернативную систему для организации графика, чтобы у нас был индикатор, позволяющий как можно быстрее интерпретировать сделки, совершенные на рынке.

Нейросети — это просто (Часть 18): Ассоциативные правила
В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.

Биржевая сеточная торговля лимитными ордерами на полном автомате на Московской бирже MOEX
Разработка торгового советника на языке торговых стратегий MQL5 для MetaTrader 5 Московской биржи MOEX. Советник будет торговать по сеточной стратегии на терминале MetaTrader 5 на рынках Московской биржи MOEX, которая также включает в себя закрытие позиции по стоп-лоссу или тейк-профиту, удаление отложенных ордеров при наступлении определенных рыночных условий.

Нейросети — это просто (Часть 17): Понижение размерности
Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.

Разработка торгового советника с нуля (Часть 12): Время и торговля (I)
Сегодня мы создадим Time & Trade с быстрой интерпретацией для чтения потока ордеров. Это первая часть, в которой мы будем строить эту систему. В следующей статье мы дополним систему недостающей информацией, поскольку нам потребуется добавить в код нашего эксперта несколько новых вещей.