
Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты
Данная статья продолжает тему брутфорса, привнося в алгоритм моей программы новые возможности по анализу рынка, тем самым ускоряя скорость анализа и качество итоговых результатов, что обеспечивает максимально качественный взгляд на глобальные закономерности в рамках данного подхода.

Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)
Ранее мы уже рассмотрели механизм само-внимания (self-attention) в нейронных сетях. В практике современных архитектур нейронных сетей используется несколько параллельных потоков self-attention для поиска различных зависимостей между элементами последовательности. Давайте рассмотрим реализацию такого подхода и оценим его влияние на общий результат работы сети.


Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа
В статье создадим список для хранения тиковых данных одного символа и проверим его создание и получение из него требуемых данных в советнике. Такие списки тиковых данных — свой для каждого используемого символа — далее будут составлять собою коллекцию тиковых данных.

Поиск сезонных закономерностей на валютном рынке с помощью алгоритма CatBoost
В статье показана возможность создания моделей машинного обучения с временными фильтрами и раскрыта эффективность такого подхода. Теперь можно исключить человеческий фактор, просто сказав модели: "Хочу, чтобы ты торговала в определенный час определенного дня недели". А поиск закономерностей возложить на плечи алгоритма.


Самоадаптирующийся алгоритм (Часть III): Отказываемся от оптимизации
Получить по-настоящему стабильный алгоритм невозможно, если для подбора параметров используется оптимизация по историческим данным. Стабильный алгоритм сам должен знать, какие параметры нужны для работы по любому торговому инструменту в любой момент времени. Он не должен предполагать или угадывать, он должен точно знать.


Рынок и физика его глобальных закономерностей
В данной статье я постараюсь проверить предположение о том, что любая система, имеющая под собой даже небольшое понимание рынка, способна работать в глобальном масштабе. Я не буду придумывать какие-то теории или законы, а буду размышлять только исходя из известных всех фактов, постепенно переводя известные нам факты на язык математического анализа.

Нейросети — это просто (Часть 9): Документируем проделанную работу
Мы уже проделали довольно большой путь, и код нашей библиотеке сильно разрастается. Становится сложно отслеживать все связи и зависимости. И конечно, перед продолжением развития проекта нам нужно задокументировать уже проделанную работу и актуализировать документацию на каждом последующем шаге. Правильно подготовленная документация поможет нам увидеть целостность нашей работы.


Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика
С данной статьи приступим к созданию функционала библиотеки для работы с ценовыми данными. Сегодня создадим класс объекта, который будет хранить в себе все данные цен, пришедшие с очередным тиком.


Разработка самоадаптирующегося алгоритма (Часть II): Повышение эффективности
В этой статье я продолжу взятую тему, но начну с того, что сделаю более гибким алгоритм, разработанный ранее. Тот алгоритм становился стабильнее с увеличением числа свечей в окне для анализа или с увеличением порогового процента перевеса падающих или растущих свечей. Приходилось идти на компромисс и устанавливать больше размер выборки для анализа или больший процент перевеса преобладающих свечей.

Градиентный бустинг в задачах трансдуктивного и активного машинного обучения
В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).

Работа с таймсериями в библиотеке DoEasy (Часть 58): Таймсерии данных буферов индикаторов
В завершении темы работы с таймсериями организуем хранение, поиск и сортировку данных, хранящихся в буферах индикаторов, что позволит в дальнейшем проводить анализ на основе значений индикаторов, создаваемых на основе библиотеки в своих программах. Общая концепция всех классов-коллекций библиотеки позволяет легко находить нужные данные в соответствующей коллекции, и соответственно, это же будет возможным и в создаваемом сегодня классе.

Нейросети — это просто (Часть 8): Механизмы внимания
В предыдущих статьях мы уже протестировали различные варианты организации нейронных сетей. В том числе и сверточные сети, заимствованные из алгоритмов обработки изображений. В данной статье я предлагаю рассмотреть механизмы внимания, появление которых дало толчок в развитии языковых моделей.


Разработка самоадаптирующегося алгоритма (Часть I): Поиск базовой закономерности
В серии статей я покажу пример, как разрабатывать самоадаптирующиеся алгоритмы, учитывающие максимум факторов, возникающих на рынках, как эти ситуации систематизировать, описать в логике и учесть при торговле. Начну с очень простого алгоритма, который со временем обрастет теорией и эволюционирует в сложнейший проект.


Использование электронных таблиц для построения торговых стратегий
В статье описаны основные принципы и приёмы, позволяющие провести анализ любой стратегии с помощью электронных таблиц — Excel, Calc, Google. Также сделано сравнение полученных результатов с тестером MetaTrader 5.

Брутфорс-подход к поиску закономерностей (Часть II): Погружение
В данной статье я продолжу тему брутфорс-подхода. Постараюсь более качественно осветить закономерности с помощью новой улучшенной версии своей программы и постараюсь найти разницу в стабильности используя разные временные отрезки и разные таймфреймы котировок.

Продвинутый ресемплинг и выбор CatBoost моделей брутфорс методом
В данной статье описан один из возможных подходов к трансформации данных для улучшения обобщающей способности модели, а также рассмотрен перебор моделей CatBoost и выбор лучшей из них.

Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора
В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.

Машинное обучение от Яндекс (CatBoost) без изучения Python и R
В статье приведен код и описаны основные этапы процесса машинного обучения на конкретном примере. Для получения моделей не потребуется знание таких языков программирования, как Python или R, знание языка MQL5 будут востребованы неглубокие, впрочем, как и в наличии у автора этой статьи, поэтому смею надеяться, что данная статья послужит хорошим руководством для широкого круга заинтересованных лиц, желающих экспериментальным путем оценить возможности машинного обучения и внедрить их в свои разработки.

Нейросети — это просто (Часть 7): Адаптивные методы оптимизации
В предыдущих статьях для обучения нейронной сети использовался метод стохастического градиентного спуска с применением единого коэффициента обучения для всех нейронов в сети. В данной статье предлагаю посмотреть в сторону адаптивных методов обучения, которые позволяют изменять скорость обучения каждого нейрона. Давайте посмотрим на плюсы и минусы такого подхода.

Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции
В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.

Градиентный бустинг (CatBoost) в задачах построения торговых систем. Наивный подход
Обучение классификатора CatBoost на языке Python и экспорт модели в mql5 формат, а также разбор параметров модели и кастомный тестер стратегий. Для подготовки данных и обучения модели используется язык программирования Python и библиотека MetaTrader5.


Примеры анализа графиков с использованием Секвенты Демарка и уровней Мюррея-Ганна
Секвента Томаса Демарка отлично покаызвает изменения баланса в движении цены. Особенно хорошо это видно, если сочетать её сигналы с индикатором уровней, например, с уровнями Мюррея. Статья именно о таких сочетаниях. Текст рассчитан скорее на новичков в торговле, и тех, у кого всё ещё не получается найти свой "Грааль", хотя я и показываю некоторые особенности построения уровней, которых на других форумах не встречал. Так что, возможно, местами будет полезно и продвинутым пользователям.. Ну, а гуру приглашаю к диалогу и критике...

Практическое применение нейросетей в трейдинге. Python (Часть I)
В данной статье мы поэтапно разберем вариант реализации торговой системы на основе программирования глубоких нейронных сетей на Python. Для этого мы используем библиотеку машинного обучения TensorFlow, разработанной компанией Google. А для описания нейронных сетей используем библиотеку Keras.


Оптимальный подход к разработке и анализу торговых систем
В данной статье я постараюсь показать по каким критериям выбирать систему или сигнал для инвестирования своих средств, а также каков оптимальный подход к разработке торговых систем и почему этот вопрос настолько важен в рамках торговли на форекс.

Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов
В статье продолжим развитие классов объектов-индикаторов и их коллекции. Создадим для каждого объекта-индикатора его описание и скорректируем класс-коллекцию для безошибочного хранения и получения объектов-индикаторов из списка-коллекции.

Набор инструментов для ручной разметки графиков и торговли (Часть II). Рисование разметки
Статья продолжает цикл, в котором я показываю, как создавал удобную для меня библиотеку для ручной разметки графиков с помощью сочетаний клавиш. Разметка происходит прямыми линиями и их комбинациями. В этой части рассказано непосредственно о самом рисовании с помощью функций, описанных в первой части. Библиотеку можно подключить к любому эксперту или индикатору, существенно облегчив себе задачи разметки. Данное решение НЕ ИСПОЛЬЗУЕТ внешних dll, все команды реализованы с помощью встроенных средств языка MQL.

Нейросети — это просто (Часть 6): Эксперименты с коэффициентом обучения нейронной сети
Мы уже рассмотрели некоторые виды нейронных сетей и способы их реализации. Во всех случаях мы использовали метод градиентного спуска для обучения нейронных сетей, который предполагает выбор коэффициента обучения. В данной статье, я хочу на примерах показать важность правильного выбора и его влияние на обучение нейронной сети.

Работа с таймсериями в библиотеке DoEasy (Часть 54): Классы-наследники абстрактного базового индикатора
В статье рассмотрим создание классов объектов-наследников базового абстрактного индикатора. Такие объекты дадут нам доступ к возможностям создавать индикаторные советники, собирать и получать статистику значений данных разных индикаторов и цен. Также создадим коллекцию объектов-индикаторов, из которой можно будет получать доступ к свойствам и данным каждого созданного в программе индикатора.

Работа с таймсериями в библиотеке DoEasy (Часть 53): Класс абстрактного базового индикатора
В статье рассмотрим создание класса абстрактного индикатора, который далее будет использоваться как базовый класс для создания объектов стандартных и пользовательских индикаторов библиотеки.

Нейросети — это просто (Часть 5): Многопоточные вычисления в OpenCL
Мы уже познакомились с некоторыми типами реализации нейронных сетей. Легко заметить, что для каждого нейрона сети повторяются те же самые операции. И тут возникает желание воспользоваться возможностями многопоточных вычислений современной техники для ускорения процесса обучения нейронной сети. Об одном из вариантов такой реализации пойдет речь в данной статье.


Сетка и мартингейл: что это такое и как их использовать?
В данной статье я постараюсь подробно объяснить, что такое сетка и мартингейл, а также что в них общего. Ну и попытаться проанализировать, насколько эти стратегии жизнеспособны в реальности. Будет математическая часть и практическая.


Пишем Twitter-клиент для MetaTrader: Часть 2
Реализуем Twitter-клиент в виде MQL-класса, позволяющего отправлять твиты с картинками. Подключив всего один автономный include-файл, вы сможете публиковать твиты и выкладывать свои графики и сигналы.

Работа с таймсериями в библиотеке DoEasy (Часть 52): Кроссплатформенность мультипериодных мультисимвольных однобуферных стандартных индикаторов
В статье рассмотрим создание мультисимвольного мультипериодного стандартного индикатора Accumulation/Distribution. Чтобы программы, написанные под устаревшую платформу MetaTrader 4, основанные на данной библиотеке, могли нормально работать при переходе на MetaTrader 5, мы немного доработаем классы библиотеки касаемо индикаторов.

Брутфорс-подход к поиску закономерностей
В данной статье мы будем искать закономерности на рынке, создавать советников на их основе и проверять, как долго эти закономерности сохраняют работоспособность и вообще, сохраняют ли они ее.

Нейросети — это просто (Часть 4): Рекуррентные сети
Продолжаем наше погружение в мир нейронных сетей. И в этой статье я предлагаю поговорить о рекуррентных нейронных сетях. Данный тип нейронных сетей предлагается для использования с временными рядами, коими и являются ценовые графики в торговой платформе MetaTrader 5.


Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL
Хотите получать твиты или публиковать свои торговые сигналы в Твиттере? Больше не нужно искать решения — в этой серии статей мы рассмотрим, как работать с Твиттером без использования DLL. Мы вместе реализуем Tweeter API с помощью MQL. В первой статье начнем с возможностей аутентификации и авторизации в с Twitter API.


Торговля на форекс и ее базовая математика
Статья ставит целью максимально просто и быстро описать основные особенности торговли на форекс, поделиться простыми истинами с новичками. Ну и постараться ответить на наиболее волнующие вопросы в трейдерской среде, а также написать простенький индикатор.

Работа с таймсериями в библиотеке DoEasy (Часть 51): Составные мультипериодные мультисимвольные стандартные индикаторы
В статье завершим разработку объектов мультисимвольных мультипериодных стандартных индикаторов. На примере стандартного индикатора Ichimoku Kinko Hyo разберём создание сложносоставных пользовательских индикаторов, имеющих вспомогательные рисуемые буферы для отображения данных на графике.

Нейросети — это просто (Часть 3): Сверточные сети
Продолжая тему нейронных сетей, предлагаю рассмотреть сверточные нейронные сети. Данный тип нейронных сетей был разработан для поиска объектов на изображении. Рассмотрим, как он может нам помочь в работе на финансовых рынках.

Работа с таймсериями в библиотеке DoEasy (Часть 50): Мультипериодные мультисимвольные стандартные индикаторы со смещением
В статье доработаем методы библиотеки для корректного отображения мультисимвольных мультипериодных стандартных индикаторов, линии которых выводятся на график текущего символа со смещением, задаваемым в настройках. А также наведём порядок в методах работы со стандартными индикаторами и уберём в область библиотеки лишний код в итоговой программе-индикаторе.