Статьи по программированию на языке MQL5

icon

Изучайте язык программирования торговых стратегий MQL5 по опубликованным здесь статьям, большая часть которых написана вами - членами сообщества. Все статьи разделены на категории для быстрого поиска ответа по тому или иному аспекту программирования: "Интеграция", "Тестер", "Торговые стратегии" и многое другое.

Следите за новыми публикациями и участвуйте в их обсуждении на форуме!

Новая статья
последние | лучшие
preview
Нейросети — это просто (Часть 12): Dropout

Нейросети — это просто (Часть 12): Dropout

Продвигаясь дальше в изучении нейронных сетей, наверное, стоит немного уделить внимания методам повышения их сходимости при обучении. Существует несколько таких методов. В этой статье предлагаю рассмотреть один из них — Dropout.
Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов  и класс для работы с Сигналами MQL5.com
Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов  и класс для работы с Сигналами MQL5.com

Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов и класс для работы с Сигналами MQL5.com

В статье создадим класс-коллекцию стаканов цен всех символов и начнём разработку функционала для работы с сервисом сигналов MQL5.com — создадим класс объекта-сигнала.
preview
Машинное обучение в торговых системах на сетке и мартингейле. Есть ли рыба?

Машинное обучение в торговых системах на сетке и мартингейле. Есть ли рыба?

Данная статья познакомит читателя с техникой машинного обучения для торговли сеткой и мартингейлом. К моему удивлению, такой подход по каким-то причинам совершенно не затронут в глобальной сети. Прочитав статью, вы сможете создавать своих собственных ботов.
preview
Полезные и экзотические приемы для автоматической торговли

Полезные и экзотические приемы для автоматической торговли

В данной статье я покажу несколько очень интересных и полезных приемов для автоматической торговли. Часть из этих приемов возможно кому-то знакома, кому-то — нет, но я постараюсь привести самые интересные методы и объяснить почему стоит ими пользоваться. Самое главное, покажу на практике, что они могут. Напишем советники и проверим все описанные приемы на истории котировок.
Самоадаптирующийся алгоритм (Часть IV): Дополнительный функционал и тесты
Самоадаптирующийся алгоритм (Часть IV): Дополнительный функционал и тесты

Самоадаптирующийся алгоритм (Часть IV): Дополнительный функционал и тесты

Продолжаю наполнять алгоритм минимально необходимым функционалом, проведу тесты того, что получилось. Доходность получилась невысокая, но в статьях показана модель, которая позволяет в полностью автоматическом режиме торговать в плюс по совершенно разным торговым инструментам, и не только разным, но и торгующимся на принципиально разных рынках.
preview
Нейросети — это просто (Часть 11): Вариации на тему GPT

Нейросети — это просто (Часть 11): Вариации на тему GPT

Сегодня, наверное, одной из самых передовых языковых моделей нейросетей является GPT-3, которая в максимальном своем варианте содержит 175 млрд. параметров. Конечно, мы не будем создавать подобного монстра в домашних условиях. Но давайте посмотрим, какие архитектурные решения мы можем использовать в своей работе и какие это нам даст преимущества.
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен

Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен

В статье сделаем реалтайм-обновление коллекции тиковых данных и подготовим класс объекта-символа для работы со стаканом цен, работу над которым начнём со следующей статьи.
preview
Практическое применение нейросетей в трейдинге (Часть 2). Компьютерное зрение

Практическое применение нейросетей в трейдинге (Часть 2). Компьютерное зрение

Применение компьютерного зрения позволит обучать нейронные сети на визуальном представлении ценового графика и индикаторов. Данный метод позволит нам более свободно оперировать всем комплексом технических индикаторов, так как не требует их цифровой подачи в нейронную сеть.
Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!
Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Каждый трейдер приходит на рынок с целью заработать свой первый миллион долларов. Как это сделать без большого риска и не имея стартового капитала? MQL5 сервисы дают такие возможности разработчикам и трейдерам в любой стране мира.
preview
WebSocket для MetaTrader 5

WebSocket для MetaTrader 5

До появления сетевых функций в обновленном MQL5 API, приложения MetaTrader были ограничены в возможности подключаться и взаимодействовать с сервисами на основе протокола WebSocket. Сейчас ситуация изменилась. В этой статье мы рассмотрим реализацию библиотеки WebSocket на чистом MQL5. Будут представлены краткое описание протокола WebSocket и пошаговое руководство по использованию полученной библиотеки.
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.
preview
Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты

Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты

Данная статья продолжает тему брутфорса, привнося в алгоритм моей программы новые возможности по анализу рынка, тем самым ускоряя скорость анализа и качество итоговых результатов, что обеспечивает максимально качественный взгляд на глобальные закономерности в рамках данного подхода.
preview
Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)

Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)

Ранее мы уже рассмотрели механизм само-внимания (self-attention) в нейронных сетях. В практике современных архитектур нейронных сетей используется несколько параллельных потоков self-attention для поиска различных зависимостей между элементами последовательности. Давайте рассмотрим реализацию такого подхода и оценим его влияние на общий результат работы сети.
Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа
Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа

Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа

В статье создадим список для хранения тиковых данных одного символа и проверим его создание и получение из него требуемых данных в советнике. Такие списки тиковых данных — свой для каждого используемого символа — далее будут составлять собою коллекцию тиковых данных.
preview
Поиск сезонных закономерностей на валютном рынке с помощью алгоритма CatBoost

Поиск сезонных закономерностей на валютном рынке с помощью алгоритма CatBoost

В статье показана возможность создания моделей машинного обучения с временными фильтрами и раскрыта эффективность такого подхода. Теперь можно исключить человеческий фактор, просто сказав модели: "Хочу, чтобы ты торговала в определенный час определенного дня недели". А поиск закономерностей возложить на плечи алгоритма.
Самоадаптирующийся алгоритм (Часть III): Отказываемся от оптимизации
Самоадаптирующийся алгоритм (Часть III): Отказываемся от оптимизации

Самоадаптирующийся алгоритм (Часть III): Отказываемся от оптимизации

Получить по-настоящему стабильный алгоритм невозможно, если для подбора параметров используется оптимизация по историческим данным. Стабильный алгоритм сам должен знать, какие параметры нужны для работы по любому торговому инструменту в любой момент времени. Он не должен предполагать или угадывать, он должен точно знать.
Рынок и физика его глобальных закономерностей
Рынок и физика его глобальных закономерностей

Рынок и физика его глобальных закономерностей

В данной статье я постараюсь проверить предположение о том, что любая система, имеющая под собой даже небольшое понимание рынка, способна работать в глобальном масштабе. Я не буду придумывать какие-то теории или законы, а буду размышлять только исходя из известных всех фактов, постепенно переводя известные нам факты на язык математического анализа.
preview
Нейросети — это просто (Часть 9): Документируем проделанную работу

Нейросети — это просто (Часть 9): Документируем проделанную работу

Мы уже проделали довольно большой путь, и код нашей библиотеке сильно разрастается. Становится сложно отслеживать все связи и зависимости. И конечно, перед продолжением развития проекта нам нужно задокументировать уже проделанную работу и актуализировать документацию на каждом последующем шаге. Правильно подготовленная документация поможет нам увидеть целостность нашей работы.
Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика
Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика

Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика

С данной статьи приступим к созданию функционала библиотеки для работы с ценовыми данными. Сегодня создадим класс объекта, который будет хранить в себе все данные цен, пришедшие с очередным тиком.
Разработка самоадаптирующегося алгоритма (Часть II): Повышение эффективности
Разработка самоадаптирующегося алгоритма (Часть II): Повышение эффективности

Разработка самоадаптирующегося алгоритма (Часть II): Повышение эффективности

В этой статье я продолжу взятую тему, но начну с того, что сделаю более гибким алгоритм, разработанный ранее. Тот алгоритм становился стабильнее с увеличением числа свечей в окне для анализа или с увеличением порогового процента перевеса падающих или растущих свечей. Приходилось идти на компромисс и устанавливать больше размер выборки для анализа или больший процент перевеса преобладающих свечей.
preview
Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

Градиентный бустинг в задачах трансдуктивного и активного машинного обучения

В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).
preview
Работа с таймсериями в библиотеке DoEasy (Часть 58): Таймсерии данных буферов индикаторов

Работа с таймсериями в библиотеке DoEasy (Часть 58): Таймсерии данных буферов индикаторов

В завершении темы работы с таймсериями организуем хранение, поиск и сортировку данных, хранящихся в буферах индикаторов, что позволит в дальнейшем проводить анализ на основе значений индикаторов, создаваемых на основе библиотеки в своих программах. Общая концепция всех классов-коллекций библиотеки позволяет легко находить нужные данные в соответствующей коллекции, и соответственно, это же будет возможным и в создаваемом сегодня классе.
preview
Нейросети — это просто (Часть 8): Механизмы внимания

Нейросети — это просто (Часть 8): Механизмы внимания

В предыдущих статьях мы уже протестировали различные варианты организации нейронных сетей. В том числе и сверточные сети, заимствованные из алгоритмов обработки изображений. В данной статье я предлагаю рассмотреть механизмы внимания, появление которых дало толчок в развитии языковых моделей.
Разработка самоадаптирующегося алгоритма (Часть I): Поиск базовой закономерности
Разработка самоадаптирующегося алгоритма (Часть I): Поиск базовой закономерности

Разработка самоадаптирующегося алгоритма (Часть I): Поиск базовой закономерности

В серии статей я покажу пример, как разрабатывать самоадаптирующиеся алгоритмы, учитывающие максимум факторов, возникающих на рынках, как эти ситуации систематизировать, описать в логике и учесть при торговле. Начну с очень простого алгоритма, который со временем обрастет теорией и эволюционирует в сложнейший проект.
preview
Брутфорс-подход к поиску закономерностей (Часть II): Погружение

Брутфорс-подход к поиску закономерностей (Часть II): Погружение

В данной статье я продолжу тему брутфорс-подхода. Постараюсь более качественно осветить закономерности с помощью новой улучшенной версии своей программы и постараюсь найти разницу в стабильности используя разные временные отрезки и разные таймфреймы котировок.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора

Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора

В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.
preview
Машинное обучение от Яндекс (CatBoost) без изучения Python и R

Машинное обучение от Яндекс (CatBoost) без изучения Python и R

В статье приведен код и описаны основные этапы процесса машинного обучения на конкретном примере. Для получения моделей не потребуется знание таких языков программирования, как Python или R, знание языка MQL5 будут востребованы неглубокие, впрочем, как и в наличии у автора этой статьи, поэтому смею надеяться, что данная статья послужит хорошим руководством для широкого круга заинтересованных лиц, желающих экспериментальным путем оценить возможности машинного обучения и внедрить их в свои разработки.
preview
Нейросети — это просто (Часть 7): Адаптивные методы оптимизации

Нейросети — это просто (Часть 7): Адаптивные методы оптимизации

В предыдущих статьях для обучения нейронной сети использовался метод стохастического градиентного спуска с применением единого коэффициента обучения для всех нейронов в сети. В данной статье предлагаю посмотреть в сторону адаптивных методов обучения, которые позволяют изменять скорость обучения каждого нейрона. Давайте посмотрим на плюсы и минусы такого подхода.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.
preview
Градиентный бустинг (CatBoost) в задачах построения торговых систем. Наивный подход

Градиентный бустинг (CatBoost) в задачах построения торговых систем. Наивный подход

Обучение классификатора CatBoost на языке Python и экспорт модели в mql5 формат, а также разбор параметров модели и кастомный тестер стратегий. Для подготовки данных и обучения модели используется язык программирования Python и библиотека MetaTrader5.
Примеры анализа графиков с использованием Секвенты Демарка и уровней Мюррея-Ганна
Примеры анализа графиков с использованием Секвенты Демарка и уровней Мюррея-Ганна

Примеры анализа графиков с использованием Секвенты Демарка и уровней Мюррея-Ганна

Секвента Томаса Демарка отлично покаызвает изменения баланса в движении цены. Особенно хорошо это видно, если сочетать её сигналы с индикатором уровней, например, с уровнями Мюррея. Статья именно о таких сочетаниях. Текст рассчитан скорее на новичков в торговле, и тех, у кого всё ещё не получается найти свой "Грааль", хотя я и показываю некоторые особенности построения уровней, которых на других форумах не встречал. Так что, возможно, местами будет полезно и продвинутым пользователям.. Ну, а гуру приглашаю к диалогу и критике...
preview
Практическое применение нейросетей в трейдинге. Python (Часть I)

Практическое применение нейросетей в трейдинге. Python (Часть I)

В данной статье мы поэтапно разберем вариант реализации торговой системы на основе программирования глубоких нейронных сетей на Python. Для этого мы используем библиотеку машинного обучения TensorFlow, разработанной компанией Google. А для описания нейронных сетей используем библиотеку Keras.
Оптимальный подход к разработке и анализу торговых систем
Оптимальный подход к разработке и анализу торговых систем

Оптимальный подход к разработке и анализу торговых систем

В данной статье я постараюсь показать по каким критериям выбирать систему или сигнал для инвестирования своих средств, а также каков оптимальный подход к разработке торговых систем и почему этот вопрос настолько важен в рамках торговли на форекс.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов

Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов

В статье продолжим развитие классов объектов-индикаторов и их коллекции. Создадим для каждого объекта-индикатора его описание и скорректируем класс-коллекцию для безошибочного хранения и получения объектов-индикаторов из списка-коллекции.
preview
Набор инструментов для ручной разметки графиков и торговли (Часть II). Рисование разметки

Набор инструментов для ручной разметки графиков и торговли (Часть II). Рисование разметки

Статья продолжает цикл, в котором я показываю, как создавал удобную для меня библиотеку для ручной разметки графиков с помощью сочетаний клавиш. Разметка происходит прямыми линиями и их комбинациями. В этой части рассказано непосредственно о самом рисовании с помощью функций, описанных в первой части. Библиотеку можно подключить к любому эксперту или индикатору, существенно облегчив себе задачи разметки. Данное решение НЕ ИСПОЛЬЗУЕТ внешних dll, все команды реализованы с помощью встроенных средств языка MQL.
preview
Нейросети — это просто (Часть 6): Эксперименты с коэффициентом обучения нейронной сети

Нейросети — это просто (Часть 6): Эксперименты с коэффициентом обучения нейронной сети

Мы уже рассмотрели некоторые виды нейронных сетей и способы их реализации. Во всех случаях мы использовали метод градиентного спуска для обучения нейронных сетей, который предполагает выбор коэффициента обучения. В данной статье, я хочу на примерах показать важность правильного выбора и его влияние на обучение нейронной сети.