
Sistema de negociação de arbitragem de alta frequência em Python usando MetaTrader 5
Criamos um sistema de arbitragem legal aos olhos das corretoras, que gera milhares de preços sintéticos no mercado Forex, os analisa e negocia com sucesso e de forma lucrativa.

Busca de padrões arbitrários em pares de moedas no Python com o uso do MetaTrader 5
Existem padrões repetitivos e regularidades no mercado cambial? Decidi criar meu próprio sistema de análise de padrões usando Python e MetaTrader 5. Uma espécie de simbiose entre matemática e programação para conquistar o Forex.

Construção de previsões econômicas: potencialidades do Python
Como utilizar os dados econômicos do Banco Mundial para fazer previsões? O que acontece se combinarmos modelos de IA com economia?

Algoritmo de Irrigação Artificial — Artificial Showering Algorithm (ASHA)
Este artigo apresenta o Algoritmo de Irrigação Artificial (ASHA), um novo método metaheurístico desenvolvido para resolver problemas gerais de otimização. Baseado na simulação dos processos de fluxo e acúmulo de água, este algoritmo constrói o conceito de um campo ideal, no qual cada unidade de recurso (água) é convocada para buscar a solução ótima. Descubra como o ASHA adapta os princípios de fluxo e acúmulo para distribuir recursos de forma eficiente em um espaço de busca e conheça sua implementação e os resultados dos testes.

Redes neurais em trading: Segmentação de dados com base em expressões de referência
Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.

Simulação de mercado (Parte 13): Sockets (VII)
Quando você desenvolve algo, seja no xlwings, ou qualquer outro pacote que nos permita ler e escrever diretamente no Excel. Você na verdade deve notar que todos os programas, funções ou procedimentos. Executam e logo finalizam a sua tarefa. Eles não ficam ali, dentro de um loop. E por mais que você tente fazer as coisas de uma forma diferente.

Do básico ao intermediário: Indicador (III)
Neste artigo iremos ver como declarar diversos indicadores de plotagem, como DRAW_COLOR_LINE e DRAW_FILLING. Além é claro, aprender como plotar indicadores múltiplos de uma forma muito simples, prática e pouco trabalhosa. Agora que realmente pode mudar a sua forma de enxergar o MetaTrader 5 e o mercado em geral.

Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)
Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.

Redes neurais em trading: Modelo de dupla atenção para previsão de tendências
Damos continuidade à discussão sobre o uso da representação linear por partes de séries temporais, iniciada no artigo anterior. Hoje, falaremos sobre a combinação desse método com outras abordagens de análise de séries temporais para melhorar a qualidade da previsão das tendências dos movimentos de preços.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 33): Kernels de Processos Gaussianos
Os Kernels de Processos Gaussianos são a função de covariância da Distribuição Normal que pode desempenhar um papel em previsões. Exploramos esse algoritmo único em uma classe de sinal personalizada em MQL5 para ver se pode ser utilizado como um sinal principal de entrada e saída.

Integrando o MQL5 com pacotes de processamento de dados (Parte 2): Aprendizado de Máquina e Análise Preditiva
Na nossa série sobre integração do MQL5 com pacotes de processamento de dados, mergulhamos na poderosa combinação de aprendizado de máquina e análise preditiva. Exploraremos como conectar o MQL5 de forma perfeita com bibliotecas populares de aprendizado de máquina, para possibilitar modelos preditivos sofisticados para os mercados financeiros.

Reimaginando Estratégias Clássicas (Parte VI): Análise de Múltiplos Tempos Gráficos
Nesta série de artigos, revisitamos estratégias clássicas para ver se podemos melhorá-las usando IA. No artigo de hoje, vamos examinar a popular estratégia de análise de múltiplos tempos gráficos para avaliar se a estratégia seria aprimorada com IA.

Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR
Nesta série de artigos, revisitamos estratégias clássicas para verificar se podemos melhorá-las usando IA. No artigo de hoje, examinaremos uma estratégia popular de análise de múltiplos símbolos utilizando uma cesta de ativos correlacionados. Focaremos no par de moedas exótico USDZAR.

Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA
Este artigo apresenta um EA avançado para negociação no mercado Forex, que combina aprendizado de máquina com análise técnica. Ele é projetado para operar ações da Apple por meio de otimização adaptativa, gerenciamento de risco e múltiplas estratégias. Testes com dados históricos têm apresentado resultados promissores, embora também tenham evidenciado retrações significativas, indicando potencial para melhorias adicionais.

Simulação de mercado (Parte 12): Sockets (VI)
Neste artigo, vamos ver como resolver algumas questões e ver alguns problemas que temos ao usar código feito em Python dentro de outros programas. No caso o que mostrarei aqui, é um típico problema que existe, quando você vai usar o Excel junto com o MetaTrader 5. Mas para fazer esta comunicação estaremos usando o Python. Porém existe um pequeno problema nesta implementação. Não em todos os casos, mas em alguns casos específicos e quando o problema ocorre você tem que entender por que ele ocorre. Neste artigo iniciarei a explicação de como resolver tal coisa.

Do básico ao intermediário: Indicador (II)
Neste artigo veremos como implementar o calculo de média móvel e os cuidados a serem tomados ao efetivamente criar este calculo. Além disto, vamos também falar sobre a sobrecarga da função OnCalculate a fim de podemos saber quando e como trabalhar com um ou outro modelo de sobrecarga.

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 31): Escolha da função de perda
A função de perda (Loss Function) é uma métrica fundamental nos algoritmos de aprendizado de máquina, que fornece feedback para o processo de aprendizado ao quantificar o quão bem um determinado conjunto de parâmetros se comporta em comparação com o valor-alvo esperado. Vamos explorar os diferentes formatos dessa função na classe personalizada do Assistente MQL5.

EA MQL5 integrado ao Telegram (Parte 2): Envio de sinais do MQL5 para o Telegram
Nesta parte do artigo, vamos criar um EA MQL5 integrado ao Telegram que envia sinais de cruzamento de médias móveis para o mensageiro. Descreveremos detalhadamente o processo de geração de sinais de negociação com base nesses cruzamentos, implementaremos o código necessário em MQL5 e garantiremos uma integração contínua. Como resultado, teremos um sistema que envia alertas de negociação em tempo real diretamente para um grupo no Telegram.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 32): Regularização
A regularização é uma forma de penalizar a função de perda em proporção ao peso discreto aplicado ao longo das várias camadas de uma rede neural. Vamos observar a importância de algumas formas de regularização e o impacto que isso pode ter em testes realizados com um Expert Advisor montado por um assistente.

EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram
Neste artigo, criaremos um EA na linguagem MQL5 que enviará mensagens para o Telegram por meio de um bot. Configuraremos os parâmetros necessários, incluindo o token de API do bot e o identificador do chat, e então realizaremos uma requisição HTTP POST para entregar as mensagens. Em seguida, processaremos a resposta para garantir a entrega bem-sucedida e lidaremos com possíveis erros.

Ciência de dados e aprendizado de máquina (Parte 29): Como selecionar os melhores dados de Forex para treinar IA
Neste artigo, analisamos em detalhes os aspectos importantes para a escolha dos dados mais relevantes e de qualidade do mercado Forex e para melhorar o desempenho dos modelos de inteligência artificial.

Reconhecimento de Padrões Usando Dynamic Time Warping em MQL5
Neste artigo, discutimos o conceito de dynamic time warping como uma forma de identificar padrões preditivos em séries temporais financeiras. Veremos como ele funciona e também apresentaremos sua implementação em MQL5 puro.

Integração MQL5: Python
Python é uma linguagem de programação bem conhecida e popular, com muitos recursos, especialmente nas áreas de finanças, ciência de dados, Inteligência Artificial e Aprendizado de Máquina. Python é uma ferramenta poderosa que também pode ser útil no trading. O MQL5 nos permite usar essa poderosa linguagem como uma integração para alcançar nossos objetivos de forma eficaz. Neste artigo, compartilharemos como podemos usar Python como uma integração no MQL5, depois de aprender algumas informações básicas sobre Python.

Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 8): Desenvolvimento de Expert Advisor (I)
Nesta discussão, vamos criar nosso primeiro Expert Advisor em MQL5 com base no indicador que fizemos no artigo anterior. Vamos cobrir todas as funcionalidades necessárias para tornar o processo automático, incluindo o gerenciamento de riscos. Isso beneficiará extensivamente os usuários ao avançarem da execução manual de negociações para sistemas automatizados.

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5
O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 30): Normalização em Lote no Aprendizado de Máquina
A normalização em lote é um pré-processamento dos dados antes de sua entrada em um algoritmo de aprendizado de máquina, como uma rede neural. Ao aplicá-la, é essencial levar em conta o tipo de ativação que será usado pelo algoritmo. Exploraremos diferentes abordagens para extrair vantagens com um EA construído no Assistente.

Simulação de mercado (Parte 11): Sockets (V)
Vamos começar a implementar a comunicação entre o Excel e o MetaTrader 5. Mas antes é preciso entender algumas coisas importantes. Isto para que não venha a ficar coçando a cabeça tentando entender por que as coisas funcionam ou não. Mas antes que você venha a torcer o nariz para a integração entre o Python e o Excel. Vamos ver como podemos usar o xlwings, a fim de poder controlar de alguma forma o MetaTrader 5. Isto através do Excel. O que irei mostrar aqui será como foco principal a didática. Não ache que podemos fazer apenas o que mostrarei.

Do básico ao intermediário: Indicador (I)
Neste artigo criaremos o nosso primeiro indicador totalmente prático e funcional. O objetivo aqui, não é e não será mostrar como se cria de fato uma aplicação. Mas ajudar a você, meu caro leitor, a entender como você pode por conta própria, desenvolver suas próprias ideias. As colocando em prática, de forma segura, simples e prática.

Integração do MQL5 com pacotes de processamento de dados (Parte 1): Análise avançada de dados e processamento estatístico
A integração permite um fluxo de trabalho contínuo, no qual os dados financeiros brutos do MQL5 podem ser importados para pacotes de processamento de dados, como o Jupyter Lab, possibilitando análises avançadas, incluindo testes estatísticos.

Adicionando um LLM personalizado a um robô investidor (Parte 5): Desenvolvimento e teste de estratégia de trading com LLM (I) - Ajuste fino
Os modelos de linguagem (LLMs) são uma parte importante da inteligência artificial que evolui rapidamente. E para aproveitar isso devemos pensar em como integrar LLMs avançados em nossa negociação algorítmica Muitos acham desafiador ajustar esses modelos de acordo com suas necessidades, implantá-los localmente e, logo, aplicá-los à negociação algorítmica. Esta série de artigos explorará uma abordagem passo a passo para alcançar esse objetivo.

Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas
Neste artigo, analisamos empiricamente estratégias de trading clássicas para verificar se é possível aprimorá-las com inteligência artificial (IA). Utilizaremos o modelo de Análise Discriminante Linear (Linear Discriminant Analysis) para tentar prever máximas mais altas e mínimas mais baixas.

Ciência de dados e aprendizado de máquina (Parte 28): Previsão de múltiplos valores futuros para EURUSD
Muitos modelos de inteligência artificial são projetados para prever um único valor futuro. Neste artigo, veremos como utilizar modelos de aprendizado de máquina para prever múltiplos valores futuros. Essa abordagem, chamada de previsão multietapa, permite não apenas prever o preço de fechamento de amanhã, mas também o de depois de amanhã e assim por diante. A previsão multietapa oferece uma vantagem inegável para traders e analistas de dados, pois amplia o espectro de informações para oportunidades de planejamento estratégico.

Criando um painel dinâmico multissímbolo e multiperíodo do Índice de Força Relativa (RSI) em MQL5
Este artigo aborda o desenvolvimento de um painel dinâmico multissímbolo e multiperíodo do indicador RSI em MQL5. O painel tem como objetivo fornecer aos traders os valores do RSI em tempo real para diferentes símbolos e períodos gráficos. Ele será equipado com botões interativos, atualizações em tempo real e indicadores de cores para ajudar os traders a tomarem decisões informadas.

Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 29): Taxas de aprendizado e perceptrons multicamadas
Estamos concluindo a análise da sensibilidade da taxa de aprendizado ao desempenho do EA, estudando taxas de aprendizado adaptáveis Essas taxas devem ser ajustadas para cada parâmetro da camada durante o treinamento, por isso precisamos avaliar os potenciais benefícios em relação às perdas esperadas no desempenho.

Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.

Monitoramento de Trading com Notificações-Push — Exemplo de Serviço no MetaTrader 5
Neste artigo, analisaremos a criação de um programa de serviço para enviar notificações para um smartphone sobre os resultados do trading. No decorrer do artigo, aprenderemos a trabalhar com listas de objetos da Biblioteca Padrão para facilitar a seleção de objetos com as propriedades necessárias.

MQL5 Trading Toolkit (Parte 2): Expansão e Aplicação da Biblioteca EX5 para Gerenciamento de Posições
Aqui, você aprenderá a importar e utilizar bibliotecas EX5 em seu código ou projetos MQL5. Neste artigo, expandiremos a biblioteca EX5 criada anteriormente, adicionando mais funções de gerenciamento de posições e criando dois Expert Advisors (EA). No primeiro exemplo, usaremos o indicador técnico Variable Index Dynamic Average para desenvolver um EA baseado em uma estratégia de trailing stop. No segundo, implementaremos um painel de negociação para monitorar, abrir, fechar e modificar posições. Esses dois exemplos demonstrarão como utilizar a biblioteca EX5 aprimorada para o gerenciamento de posições.

Negociação de Notícias Facilitada (Parte 3): Realizando Negócios
Neste artigo, nosso especialista em negociação de notícias começará a abrir negociações com base no calendário econômico armazenado em nosso banco de dados. Além disso, melhoraremos os gráficos do especialista para exibir informações mais relevantes sobre os próximos eventos do calendário econômico.

DoEasy. Funções de Serviço (Parte 3): Padrão "Barra Externa"
Neste artigo, desenvolveremos o padrão Price Action "Barra Externa" na biblioteca DoEasy e otimizaremos os métodos de acesso ao gerenciamento de padrões de preço. Além disso, realizaremos correções de erros e melhorias identificadas durante os testes da biblioteca.

Redes neurais em trading: Abordagem sem máscara para previsão do movimento de preços
Neste artigo, apresentamos o método Mask-Attention-Free Transformer (MAFT) e sua aplicação na área de trading. Ao contrário dos Transformers tradicionais, que exigem mascaramento de dados ao processar sequências, o MAFT otimiza o processo de atenção, eliminando a necessidade de mascaramento, o que melhora significativamente a eficiência computacional.