
Scalping Orderflow para MQL5
Este Expert Advisor para MetaTrader 5 implementa uma estratégia de Scalping OrderFlow com gerenciamento de risco avançado. Ele utiliza múltiplos indicadores técnicos para identificar oportunidades de negociação com base em desequilíbrios de fluxo de ordens. Os testes de retrocesso (backtesting) mostram potencial de lucratividade, mas destacam a necessidade de mais otimizações, especialmente no gerenciamento de risco e nas taxas de acerto das operações. Adequado para traders experientes, exige testes aprofundados e compreensão antes da utilização em ambiente real.

Simulação de mercado: Position View (III)
Nestes últimos artigos, tenho mencionado o fato de que precisamos em alguns momentos definir um valor para a propriedade ZOrder. Mas por que?!?! Já que muitos dos códigos, que adicionam objetos no gráfico, simplesmente não utilizam, ou melhor, não definem um valor para tal propriedade. Bem, não estou aqui, para dizer, o que cada programador, deve ou não fazer. Como ele deve ou não criar seus códigos. Estou aqui, a fim de mostrar, a você caro leitor, e interessado em realmente compreender como as coisas funcionam, por debaixo dos panos.

Do básico ao intermediário: SandBox e o MetaTrader
Você sabe o que é uma SandBox? Sabe como trabalhar com ela? Se a resposta para qualquer uma destas questões for um não. Veja este artigo, para entender o principio básico por trás de uma SandBox. E entenda por que o MetaTrader 5 faz uso de uma SandBox a fim de garantir a integridade de alguns de seus dados. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

HTTP e Connexus (Parte 2): Entendendo a Arquitetura HTTP e o Design de Bibliotecas
Este artigo explora os fundamentos do protocolo HTTP, cobrindo os principais métodos (GET, POST, PUT, DELETE), códigos de status e a estrutura das URLs. Além disso, apresenta o início da construção da biblioteca Connexus com as classes CQueryParam e CURL, que facilitam a manipulação de URLs e parâmetros de consulta em requisições HTTP.

Expert Advisor Auto-otimizável com MQL5 e Python (Parte IV): Empilhamento de Modelos
Hoje, vamos demonstrar como você pode construir aplicações de trading com IA capazes de aprender com os próprios erros. Vamos demonstrar uma técnica conhecida como stacking (empilhamento), na qual usamos 2 modelos para fazer 1 previsão. O primeiro modelo é tipicamente um aprendiz mais fraco, e o segundo modelo normalmente é um modelo mais poderoso que aprende com os resíduos do nosso aprendiz mais fraco. Nosso objetivo é criar um conjunto de modelos (ensemble), na esperança de alcançar maior acurácia.

Ganhe Vantagem em Qualquer Mercado (Parte IV): Índices de Volatilidade do Euro e do Ouro da CBOE
Vamos analisar dados alternativos selecionados pela Chicago Board Of Options Exchange (CBOE) para melhorar a precisão de nossas redes neurais profundas ao prever o símbolo XAUEUR.

Simulação de mercado: Position View (II)
Neste artigo, mostrarei de maneira o mais simples e prática possível. Como você poderá usar um indicador como sendo uma forma de observar posições que estejam abertas. Isto junto ao servidor de negociação. Estou fazendo isto, desta forma e ao poucos, justamente para mostrar, que você não precisa necessariamente, colocar tais coisas em um Expert Advisor. Muitos de vocês, já devem estar bastante acostumados em fazer isto. Seja por um motivo, seja por outro qualquer. Mas a verdade é que isto é pura bobagem, já que conforme formos avançando nesta implementação, ficará claro, que você poderá criar, ou implementar diversos tipos diferentes de indicadores, para tão propósito.

Do básico ao intermediário: Eventos em Objetos (IV)
Neste artigo iremos terminar o que foi começado no artigo anterior. Ou seja, uma forma total e completamente interativa de redimensionar os objetos diretamente no gráfico. Apesar do fato de muitos imaginarem que para fazer tal coisa, seria necessário muito mais conhecimento sobre MQL5. Você irá notar que usando conceitos simples e um conhecimento muito básico, podemos implementar uma forma de trabalhar com os objetos diretamente no gráfico. Algo que terá um resultado bem divertido e bastante interessante.

Simulação de mercado: Position View (I)
O conteúdo, que veremos a partir de agora, é muito mais complicado em termos de teorias e conceitos. Tentarei deixar o conteúdo o mais simples quanto for possível fazer. A parte referente a programação em si. É até bastante simples e direta. Mas se você não compreender toda a teórica, que está debaixo dos panos. Ficará completamente sem meios para poder melhorar, ou mesmo adaptar o sistema de replay/simulador. A algo diferente do que irei mostrar. Meu intuito não é que você simplesmente compile e use o código que estou mostrando. Quero que você aprenda, entenda e se possível, possa criar algo ainda melhor.

Como funções de cem anos atrás podem atualizar suas estratégias de trading
Neste artigo, vamos falar sobre as funções de Rademacher e Walsh. Vamos explorar formas de aplicar essas funções na análise de séries temporais financeiras, além de considerar diferentes maneiras de usá-las no trading.

Do básico ao intermediário: Eventos em Objetos (III)
Neste artigo iremos preparar o terreno para algo que será visto no próximo artigo. Mas também iremos ver como permitir que um objeto do tipo OBJ_LABEL possa ser editado e movido de forma completamente interativa. Ou seja, poderemos mudar tanto o texto quanto a posição de um objeto do tipo OBJ_LABEL, sem abrir a janela de propriedades do objeto.

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)
Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.

Desenvolvendo um EA multimoeda (Parte 22): Início da transição para substituição dinâmica de configurações
Se decidimos automatizar a execução da otimização periódica, também precisamos cuidar da atualização automática das configurações dos EAs que já estão operando na conta de negociação. Isso também deve permitir rodar o EA no testador de estratégias e alterar suas configurações dentro de uma única execução.

Algoritmo de busca circular — Circle Search Algorithm (CSA)
Este artigo apresenta um novo algoritmo metaheurístico de otimização, o CSA (Circle Search Algorithm), baseado nas propriedades geométricas do círculo. O algoritmo utiliza o princípio de movimentação de pontos ao longo das tangentes para encontrar a solução ideal, combinando fases de diversificação global e intensificação local.

Fibonacci no Forex (Parte I): Testando relações entre preço e tempo
Como o mercado se movimenta com base em proporções derivadas dos números de Fibonacci? Essa sequência, em que cada número é a soma dos dois anteriores (1, 1, 2, 3, 5, 8, 13, 21...), não descreve apenas o crescimento da população de coelhos. Vamos considerar a hipótese de Pitágoras de que tudo no mundo obedece a certas proporções numéricas...

Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)
Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.

Analisando o código binário dos preços no mercado (Parte II): Convertendo para BIP39 e criando um modelo GPT
Seguimos com as tentativas de decifrar os movimentos dos preços... Que tal uma análise linguística do "vocabulário do mercado", que obtemos ao converter o código binário do preço para BIP39? Neste artigo, vamos nos aprofundar em uma abordagem inovadora para a análise de dados de mercado e explorar como os métodos modernos de processamento de linguagem natural podem ser aplicados ao idioma do mercado.

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt
O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.

Algoritmo de otimização Royal Flush — Royal Flush Optimization (RFO)
O algoritmo Royal Flush Optimization, criado pelo autor, propõe uma nova forma de abordar problemas de otimização, substituindo a codificação binária clássica dos algoritmos genéticos por uma abordagem setorial, inspirada nos princípios do pôquer. O RFO demonstra como a simplificação de princípios fundamentais pode levar à criação de um método de otimização eficaz e prático. O artigo apresenta uma análise detalhada do algoritmo e os resultados dos testes realizados.

Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.

Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.

Busca dialética — Dialectic Search (DA)
Apresentamos o Algoritmo Dialético (DA), um novo método de otimização global inspirado no conceito filosófico de dialética. O algoritmo utiliza uma divisão única da população em pensadores especulativos e práticos. Os testes mostram um desempenho impressionante de até 98% em tarefas de baixa dimensionalidade e uma eficácia geral de 57,95%. Este artigo explica esses números e apresenta uma descrição detalhada do algoritmo e os resultados dos experimentos em diferentes tipos de funções.

Neurônio biológico para previsão de séries temporais financeiras
Estamos construindo um sistema de neurônios biologicamente fiel para prever séries temporais. A introdução de um meio semelhante ao plasma na arquitetura da rede neural criou uma espécie de "inteligência coletiva", onde cada neurônio influencia o funcionamento do sistema não apenas por meio de conexões diretas, mas também por meio de interações eletromagnéticas de longo alcance. Como esse sistema neural modelando o cérebro irá se comportar no mercado?

Indicador de previsão de volatilidade usando Python
Vamos prever a volatilidade extrema futura com ajuda da classificação binária. Criamos um indicador de previsão de volatilidade extrema com uso de aprendizado de máquina.

Algoritmo da viagem evolutiva no tempo — Time Evolution Travel Algorithm (TETA)
Meu algoritmo original. Neste artigo é apresentado o Algoritmo da Viagem Evolutiva no Tempo (TETA), inspirado no conceito de universos paralelos e fluxos temporais. A ideia central do algoritmo é que, embora a viagem no tempo no sentido convencional seja impossível, podemos escolher uma sequência de eventos que leva a diferentes realidades.

Algoritmo evolutivo de trading com aprendizado por reforço e extinção de estratégias não lucrativas (ETARE)
Apresentamos um algoritmo de trading inovador que combina algoritmos evolutivos com aprendizado profundo por reforço para operar no mercado Forex. O algoritmo utiliza um mecanismo de extinção das estratégias ineficientes, com o objetivo de otimizar a estratégia de negociação.

Do básico ao intermediário: Eventos em Objetos (II)
Neste artigo iremos ver como funciona os três últimos tipos de eventos que podem ser disparados por um objeto. Entender isto será algo muito divertido. Já que no final faremos algo que para muitos pode parecer um tanto quanto insanidade. Porém que é perfeitamente possível de ser feito, e tem um resultado bastante surpreendente.

Simulação de mercado: Iniciando o SQL no MQL5 (V)
No artigo anterior mostrei como você deveria proceder, a fim de conseguir adicionar o mecanismo de pesquisa. Isto para que dentro do código MQL5, você pudesse de fato fazer uso pleno do SQL. A fim de conseguir obter os resultados quando for usar o comando SELECT FROM do SQL. Mas ficou faltando falar da última função que precisamos implementar. Esta é a função DatabaseReadBind. E como para entender ela adequadamente é algo que exigirá um pouco mais de explicações. Ficou decidido que isto seria feito, não naquele artigo anterior, mas sim neste daqui. Já que o assunto é bem extenso.

Análise pós-fato da negociação: ajustando TrailingStop e novos stops no testador de estratégias
Seguimos com o tema da análise de negociações realizadas no testador de estratégias para melhorar a qualidade da negociação. Vamos verificar como o uso de diferentes métodos de trailing pode alterar os resultados de negociação já obtidos.

Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)
Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.

Usando PSAR, Heiken Ashi e Aprendizado Profundo Juntos para Operações de Trading
Este projeto explora a fusão entre aprendizado profundo e análise técnica para testar estratégias de trading no mercado de câmbio (forex). Um script em Python é usado para experimentação rápida, utilizando um modelo ONNX juntamente com indicadores tradicionais como PSAR, SMA e RSI para prever movimentos do par EUR/USD. Um script em MetaTrader 5 então leva essa estratégia para um ambiente ao vivo, usando dados históricos e análise técnica para tomar decisões de trading mais informadas. Os resultados do backtesting indicam uma abordagem cautelosa, porém consistente, com foco em gestão de risco e crescimento estável em vez da busca agressiva por lucros.

Criando um Painel Administrativo de Negociação em MQL5 (Parte III): Aprimorando a Interface com Estilo Visual (I)
Neste artigo, focaremos no estilo visual da interface gráfica do usuário (GUI) do nosso Painel Administrativo de Negociação usando MQL5. Exploraremos várias técnicas e recursos disponíveis no MQL5 que permitem a personalização e otimização da interface, garantindo que ela atenda às necessidades dos traders enquanto mantém uma estética atraente.

Como Implementar Otimização Automática em Expert Advisors MQL5
Guia passo a passo para otimização automática em MQL5 para Expert Advisors. Vamos abordar uma lógica de otimização robusta, boas práticas para seleção de parâmetros e como reconstruir estratégias com backtesting. Além disso, métodos mais avançados como a otimização walk-forward serão discutidos para aprimorar sua abordagem de trading.

Métodos de discretização dos movimentos de preço em Python
Vamos explorar métodos de discretização de preços com Python + MQL5. Neste artigo, compartilho minha experiência prática no desenvolvimento de uma biblioteca em Python que implementa uma variedade de abordagens para formar barras, desde as clássicas Volume e Range bars até métodos mais exóticos como Renko e Kagi. Barras, candles de três linhas rompidas, range bars — qual é a sua estatística? De que outras formas podemos representar os preços de maneira discreta?

Avaliação visual e ajuste da negociação no MetaTrader 5
No testador de estratégias, é possível não apenas otimizar os parâmetros do robô de negociação. Vamos mostrar como avaliar, após o fato, o histórico de negociação de sua conta e fazer ajustes na negociação dentro do testador, alterando os tamanhos dos stop orders das posições abertas.

Do básico ao intermediário: Eventos em Objetos (I)
Neste artigo irei ver três dos seis eventos que podem ser disparado pelo MetaTrader 5, quando algo acontece a um objeto presente no gráfico. Estes evento são muito uteis quando o assunto é interação com o usuário. Isto por que sem entender estes eventos, você irá ter muito mais trabalho para manter uma certa configuração no gráfico. Tentando controlar objetos com finalidades específicas.

Simulação de mercado: Iniciando o SQL no MQL5 (IV)
Muitos costuma subutilizar o SQL, ou mesmo não fazer uso dele, devido a uma má compreensão de como ele realmente funciona. Quando pesquisamos dentro de um banco de dados SQL. Não queremos necessariamente saber de uma resposta genérica. Podemos em alguns casos, estar buscando uma resposta bastante objetiva e prática. Se você criar um banco de dados, com uma certa estruturação e modelagem. Poderá colocar, virtualmente qualquer tipo de informação dentro do banco de dados.

Exemplo de CNA (Análise de Rede de Causalidade), SMOC (Controle Otimizado com Modelo Estocástico) e Teoria dos Jogos de Nash com Aprendizado Profundo
Adicionaremos Aprendizado Profundo a esses três exemplos que foram publicados em artigos anteriores e compararemos os resultados com os anteriores. O objetivo é aprender como adicionar Deep Learning a outros EAs.

Do básico ao intermediário: Objetos (IV)
Este talvez venha a ser o artigo mais divertido até este momento. Isto porque, aqui iremos implementar uma modificação de um objeto presente no MetaTrader 5, a fim de conseguir criar um outro objeto, que não existe originalmente na plataforma. Claro que o que será visto aqui, pode parecer meio que doideira. Mas funciona e tem um objetivo bastante interessante.

Redes neurais em trading: Aprendizado contextual com memória (MacroHFT)
Apresento o framework MacroHFT, que aplica aprendizado por reforço contextual com memória para melhorar as decisões em trading de alta frequência de criptomoedas, utilizando dados macroeconômicos e agentes adaptativos.