学習中にニューロンを活性化する関数:高速収束の鍵は?
本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
量子コンピューティングと取引:価格予測への新たなアプローチ
本記事では、量子コンピューティングを用いて金融市場における価格変動を予測するための革新的なアプローチについて説明します。主な焦点は、量子位相推定(QPE: Quantum Phase Estimation)アルゴリズムを適用して価格パターンのプロトタイプを見つけることであり、これによりトレーダーは市場データの分析を大幅に高速化できるようになります。
取引所価格のバイナリコードの分析(第1回):テクニカル分析の新たな視点
本記事では、価格変動をバイナリコードに変換するという新しい視点からテクニカル分析にアプローチします。筆者は、シンプルな値動きから複雑な市場パターンに至るまで、あらゆる市場行動を「0」と「1」のシーケンスとして符号化できることを示します。
市場シミュレーション(第3回):パフォーマンスの問題
時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出
本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
ビッグバンビッグクランチ(BBBC)アルゴリズム
本記事では、ビッグバンビッグクランチ(BBBC)法について紹介します。本手法は2つの主要な段階から構成されます。すなわち、ランダムな点を周期的に生成する段階と、それらを最適解へ圧縮する段階です。本アプローチは探索と精緻化を組み合わせることで、段階的により良好な解を導出し、新たな最適化の可能性を開くことが可能です。
市場シミュレーション(第2回):両建て注文(II)
前回の記事とは異なり、今回はエキスパートアドバイザー(EA)を用いて選択オプションをテストしてみます。最終的な解決策ではありませんが、現時点では十分な内容となっています。本記事を通じて、1つの実現可能な解決方法の実装手順を理解できます。
ブラックホールアルゴリズム(BHA)
ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成
Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
人工部族アルゴリズム(ATA)
本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
市場シミュレーション(第1回):両建て注文(I)
本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(最終回)
前回の記事では、複数のエージェントによるアンサンブルを用いて、異なるデータスケールのマルチモーダル時系列をクロス分析するマルチエージェント適応型フレームワーク「MASAAT」を紹介しました。今回は、このフレームワークのアプローチをMQL5で引き続き実装し、この研究を論理的な結論へと導きます。
リプレイシステムの開発(第78回):新しいChart Trade(V)
本記事では、受信側コードの一部の実装方法について解説します。ここでは、プロトコルの相互作用をテストし理解するためのエキスパートアドバイザー(EA)を実装します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
リプレイシステムの開発(第77回):新しいChart Trade (IV)
この記事では、通信プロトコルを作成する際に考慮すべきいくつかの対策や注意点について説明します。内容は比較的シンプルでわかりやすいものなので、詳細には触れません。しかし、この記事の内容を理解することで、今後の展開が把握しやすくなります。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略
本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成
本記事では、MQL5を用いて複数の通貨ペアをリアルタイムで監視できるローリングティッカーテープを開発します。Bid価格(買値)、スプレッド、日次変化率をスクロール表示し、価格変動やトレンドを効果的に強調するために、フォント、色、スクロール速度をカスタマイズ可能にします。
MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善
この記事では、MQL5の多時間軸スキャナーダッシュボードを、移動可能および切り替え機能付きにアップグレードします。ダッシュボードをドラッグできるようにし、画面の使用効率を高めるために最小化/最大化オプションを追加します。これらの機能強化を実装し、テストすることで、より柔軟な取引環境を実現します。
プライスアクション分析ツールキットの開発(第31回):Python Candlestick Recognitionエンジン(I) - 手動検出
ローソク足パターンはプライスアクション取引において基本的な要素であり、市場の反転や継続の可能性を示す貴重な手がかりを提供します。信頼できるツールを想像してみてください。このツールは、新しい価格バーが生成されるたびにそれを監視し、包み足、ハンマー、十字線、スターなどの主要な形成を特定し、重要な取引セットアップが検出された際に即座に通知します。これがまさに私たちが開発した機能です。このシステムは、取引初心者の方から経験豊富なプロフェッショナルまで幅広く活用できます。ローソク足パターンをリアルタイムで通知することで、取引の実行に集中し、より自信を持って効率的に取引をおこなうことが可能になります。以下では、本ツールの動作方法と、どのように取引戦略を強化できるかについて詳しく説明します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(V) - イベントリマインダーシステム
本ディスカッションでは、News Headline EAに表示される経済指標カレンダーイベントに対して、精緻化されたイベント通知ロジックを統合することで得られる追加的な改善について検討します。この強化により、主要な今後のイベント直前にユーザーがタイムリーに通知を受け取れるようになります。詳細については、本ディスカッションでご確認ください。
MQL5における特異スペクトル解析
本記事は、特異スペクトル解析(SSA: Singular Spectrum Analysis)の概念に不慣れな方を対象に、MQL5で利用可能な組み込みツールを実際に活用できるようになるためのガイドとして作成されたものです。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(IV) - ローカルホストAIモデル市場インサイト
本日のディスカッションでは、オープンソースのAIモデルをセルフホスティングし、市場インサイトの生成に活用する方法について探ります。これは、News Headline EA(エキスパートアドバイザー)を拡張し、AIインサイトレーンを導入することで、多機能統合型アシストツールへと変貌させる取り組みの一環です。このアップグレードにより、EAはカレンダーイベント、金融ニュース速報、テクニカル指標に加え、AIによる市場見解を提供できるようになり、タイムリーで多角的、かつ知的なサポートを取引判断に提供します。本日は、実践的な統合戦略や、MQL5が外部リソースと連携して強力で知的な取引ターミナルを構築する方法についても議論します。
共和分株式による統計的裁定取引(第1回):エングル=グレンジャーおよびジョハンセンの共和分検定
本記事は、トレーダー向けに、最も一般的な共和分検定を優しく紹介し、その結果の理解方法を簡単に解説することを目的としています。エングル=グレンジャーおよびジョハンセンの共和分検定は、長期的なダイナミクスを共有する統計的に有意な資産のペアやグループを特定するのに有効です。特にジョハンセン検定は、3つ以上の資産を含むポートフォリオに対して有用で、複数の共和分ベクトルの強さを一度に評価できます。
プライスアクション分析ツールキットの開発(第30回):コモディティチャンネル指数(CCI)、Zero Line EA
プライスアクション分析の自動化は、今後の方向性を示す重要なステップです。本記事では、デュアルCCIインジケーター、ゼロラインクロスオーバー戦略、EMA、そしてプライスアクションを組み合わせ、ATRを用いて売買シグナルを生成し、ストップロス(SL)およびテイクプロフィット(TP)を設定するツールを開発します。CCI Zero Line EAの開発手法について学ぶために、ぜひお読みください。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(III)-インジケーターインサイト
本記事では、News Headline EAをさらに進化させるために、専用の「インジケーターインサイトレーン」を導入します。これは、RSI、MACD、ストキャスティクス、CCIなどの主要インジケーターから生成されるテクニカルシグナルを、チャート上にコンパクトにまとめて表示する仕組みです。この方法により、MetaTrader 5ターミナルで複数のインジケーターウィンドウを開く必要がなくなり、作業スペースをすっきりと保つことができます。さらに、MQL5のAPIを活用してインジケーターデータをバックグラウンドで取得することで、カスタムロジックを使ったリアルタイムの市場分析や可視化が可能になります。本記事では、MQL5でインジケーターデータを操作し、チャート上の単一水平レーンに、知的で省スペースなスクロール式インサイトシステムを作成する方法を詳しく解説します。
データサイエンスとML(第44回):ベクトル自己回帰(VAR)を用いた外国為替OHLC時系列予測
本記事では、ベクトル自己回帰(VAR: Vector Autoregression)モデルを用いて、複数の通貨ペアのOHLC(始値、高値、安値、終値)時系列データを予測する方法を解説します。VARモデルの実装、学習、MetaTrader5上でのリアルタイム予測までをカバーし、通貨間の相互依存関係を分析して取引戦略の改善に役立てることができます。
データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出
チャートを見ていて、奇妙な感覚を覚えたことはありませんか。表面のすぐ下にパターンが隠されている気がして、もし解読できれば価格がどこに向かうか分かるかもしれない、そんな秘密のコードが存在するかもしれないという感覚です。ここで紹介するのがLGMM、マーケットの隠れたパターンを検出するモデルです。これは機械学習モデルで、隠れた市場のパターンを識別する手助けをします。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(I)
MetaTrader 5ターミナルでの取引において、ニュースのアクセス性は非常に重要な要素です。数多くのニュースAPIが存在するものの、多くのトレーダーはそれらを効果的に取引環境に統合することに課題を抱えています。本記事では、ニュースを最も必要とする場所であるチャート上に直接表示する、効率的なソリューションの構築を目指します。その実現のために、APIソースからのリアルタイムニュースを監視し、表示するNews Headline EA(エキスパートアドバイザー)を作成します。
プライスアクション分析ツールキットの開発(第27回):移動平均フィルター付き流動性スイープツール
価格変動の微妙なダイナミクスを理解することは、大きなアドバンテージをもたらします。その代表的な例が流動性スイープです。これは、特に機関投資家のような大口トレーダーが意図的に価格を主要なサポートやレジスタンスレベルを突破させる戦略です。これらのレベルには、小口トレーダーのストップロス注文が集中していることが多く、大口プレイヤーはこの流動性の「ポケット」を活用することで、スリッページを最小限に抑えつつ、効率的に大きなポジションを建てたり決済したりすることができます。
MetaTrader 5機械学習の設計図(第1回):データリーケージとタイムスタンプの修正
MetaTrader 5で機械学習を取引に活用する以前に、最も見落とされがちな落とし穴の一つであるデータリーケージに対処することが極めて重要です。本記事では、データリーケージ、特にMetaTrader 5のタイムスタンプの罠がどのようにモデルのパフォーマンスを歪め、信頼性の低い売買シグナルにつながるのかを解説します。この問題の仕組みに踏み込み、その防止戦略を提示することで、実取引環境で信頼できる予測を提供する堅牢な機械学習モデルを構築するための道を切り開きます。
プライスアクション分析ツールキットの開発(第26回):Pin Bar, Engulfing Patterns and RSI Divergence (Multi-Pattern) Tool
実践的なプライスアクションツールの開発を目的として、本記事ではピンバーと包み足を検出するEAの作成について解説します。各シグナルを生成する前に、RSIのダイバージェンスを確認のトリガーとして使用します。
プライスアクション分析ツールキットの開発(第25回):Dual EMA Fractal Breaker
プライスアクションは、利益を生む取引機会を特定するための基本的なアプローチです。しかし、価格の動きやパターンを手動で監視することは、非常に手間がかかり、時間も消費します。そこで、本記事では、プライスアクションを自動的に分析し、潜在的な取引機会が検出されるたびにタイムリーなシグナルを提供するツールを開発する取り組みを紹介します。特に、フラクタルのブレイクアウトとEMA 14、EMA 200を組み合わせて信頼性の高い取引シグナルを生成する堅牢なツールを紹介し、トレーダーがより自信を持って意思決定できるよう支援します。
MQL5で自己最適化エキスパートアドバイザーを構築する(第7回):複数期間での同時取引
本連載記事では、テクニカル指標を使用する際の最適な期間を特定するためのさまざまな方法を検討してきました。本記事では、読者に対して逆のロジックを示します。すなわち、単一の最適期間を選ぶのではなく、利用可能なすべての期間を効果的に活用する方法を示します。このアプローチにより廃棄されるデータ量が減少し、通常の価格予測以外に機械学習アルゴリズムを活用する方法も得られます。
MetaTrader 5のPythonでMQL5のような取引クラスを構築する
MetaTrader 5のPythonパッケージは、Python言語でMetaTrader 5プラットフォーム用の取引アプリケーションを構築する簡単な方法を提供しますが、強力で有用なツールである一方で、アルゴリズム取引ソリューションを作成する際にはMQL5プログラミング言語ほど容易ではありません。本記事では、MQL5で提供されているものに類似した取引クラスを構築し、類似した構文を作成することで、MQL5と同様にPythonで自動売買ロボットをより簡単に作成できるようにします。
初心者からエキスパートへ:自動幾何解析システム
幾何学的パターンは、トレーダーに価格動向を簡潔に解釈する手段を提供します。多くのアナリストは手作業でトレンドラインや長方形、その他の形状を描き、形成されたパターンに基づいて取引判断をおこないます。本記事では、自動化による代替手段、すなわちMQL5を活用して最も一般的な幾何学パターンを検出・分析する方法を探ります。方法論を分解して説明し、実装の詳細を論じ、自動パターン認識がトレーダーの市場洞察をどのように鋭くできるかを強調します。
プライスアクション分析ツールキットの開発(第24回):プライスアクション定量分析ツール
ローソク足のパターンは、潜在的な市場の動きに関する貴重な洞察を提供します。単一のローソク足でも、現在のトレンドの継続を示すものもあれば、価格の動きの中での位置によって反転を示唆するものもあります。本記事では、4つの主要なローソク足形成を自動で識別するエキスパートアドバイザー(EA)を紹介します。次のセクションを参照して、このツールがどのようにプライスアクション分析を強化できるかを学んでください。
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
データサイエンスとML(第41回):YOLOv8を用いた外国為替および株式市場のパターン検出
金融市場でパターンを検出するのは、チャート上の内容を確認する必要があるため困難ですが、これは画像の制限によりMQL5では実行が困難です。この記事では、最小限の労力でチャート上のパターンを検出するのに役立つ、Pythonで作成された適切なモデルについて説明します。
プライスアクション分析ツールキットの開発(第23回):Currency Strength Meter
通貨ペアの方向性を本当に決定しているのは何でしょうか。それは各通貨自体の強さです。本記事では、通貨の強さを、その通貨が含まれるすべてのペアを順に分析することで測定します。この洞察により、各通貨ペアが相対的な強さに基づいてどのように動くかを予測することができます。詳しくは本稿をご覧ください。
データサイエンスとML(第40回):機械学習データにおけるフィボナッチリトレースメントの利用
フィボナッチリトレースメントはテクニカル分析で人気のツールであり、トレーダーが潜在的な反転ゾーンを特定するのに役立ちます。本記事では、これらのリトレースメントレベルを機械学習モデルの目的変数に変換し、この強力なツールを使用して市場をより深く理解できるようにする方法について説明します。
データサイエンスとML(第39回):ニュース × 人工知能、それに賭ける価値はあるか
ニュースは金融市場を動かす力を持っており、特に非農業部門雇用者数(NFP)のような主要指標の発表は大きな影響を与えます。私たちは、単一のヘッドラインが急激な価格変動を引き起こす様子を何度も目にしてきました。本記事では、ニュースデータと人工知能(AI)の強力な融合について探っていきます。