記事を書く
200USDをお支払いします。
200USDをお支払いします。
MetaTrader 5をダウンロードして、自動取引をお楽しみください

MQL5の圏論(第5回)等化子
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MQL5の圏論(第3回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

母集団最適化アルゴリズム:ハーモニーサーチ(HS)
今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)
GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。

MQL5クックブック - マクロ経済イベントデータベース
この記事では、SQLiteエンジンに基づいてデータベースを処理する可能性について説明します。CDatabaseクラスは、OOP原則を便利かつ効率的に使用するために作成されました。その後、マクロ経済イベントのデータベースの作成と管理に関与しています。この記事では、CDatabaseクラスの複数のメソッドを使用する例を示します。

母集団最適化アルゴリズム:細菌採餌最適化(BFO)
大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。

母集団最適化アルゴリズム:侵入雑草最適化(IWO)
雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。

ティッカーテープパネルの作成:基本バージョン
ここでは、通常取引所の相場表示に使われるプライスティッカーを使った画面を作成する方法を紹介します。複雑な外部プログラミングを使わず、MQL5だけでやってみようと思います。

母集団最適化アルゴリズム:ホタルアルゴリズム(FA)
今回は、ホタルアルゴリズム(FA)という最適化手法について考えてみます。修正により、このアルゴリズムは部外者から真の評価表リーダーへと変貌を遂げました。

MQL5の圏論(第2回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MQL5の圏論(第1回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。


母集団最適化アルゴリズム
最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。

ニューラルネットワークが簡単に(第26部):強化学習
機械学習の手法の研究を続けます。今回からは、もう1つの大きなテーマである「強化学習」を始めます。この方法では、モデルは問題を解決するためのある種の戦略を設定することができます。この強化学習の特性は、取引戦略を構築する上で新たな地平を切り開くものと期待されます。

ニューラルネットワークが簡単に(第25部):転移学習の実践
前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。

MQL5での行列およびベクトル演算
行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善
前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング
機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。

一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)
Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。

一からの取引エキスパートアドバイザーの開発(第15部):Web上のデータにアクセスする(I)
MetaTrader5ではどのようにオンラインデータにアクセスするのでしょうか。Web上にはたくさんのサイトや場所があり、膨大な量の情報が掲載されています。知るべきことは、どこを調べて、この情報をどのように使用するのが最善かということです。

DirectXチュートリアル(第I部): 最初の三角形の描画
これはDirectXの紹介記事で、APIを使用した操作の詳細について説明しており、コンポーネントが初期化される順序を理解するのに役立つはずです。この記事には、DirectXを使用して三角形をレンダリングするためのMQL5スクリプトを作成する方法の例が含まれています。

MetaTrader 5のWebSocket — WindowsAPIの使用
この記事では、WinHttp.dllを使用してMetaTrader 5プログラム用のWebSocketクライアントを作成します。クライアントは最終的にクラスとして実装され、Binary.com WebSocketAPIに対してもテストされます。

MQL5でのAutoItの使用
簡単に説明すると、この記事では、MQL5をAutoItと統合することによってMetraTrader5ターミナルのスクリプトを作成します。その中で、ターミナルのユーザーインターフェイスを操作することによってさまざまなタスクを自動化する方法を説明し、AutoItXライブラリを使用するクラスも紹介します。

多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合
MQLとの統合を開発するために利用できるPythonパッケージが存在し、データの探索、作成、機械学習モデルの使用などのさまざまな機会がもたらされます。MQL5に組み込まれているPython統合により、単純な線形回帰から深層学習モデルまで、さまざまなソリューションを作成できます。開発環境を設定して準備する方法と、いくつかの機械学習ライブラリを使用する方法を見てみましょう。

プロのプログラマーからのヒント(第I部): コードの保存、デバッグ、コンパイルプロジェクトとログの操作
プログラミングを容易にする方法、テクニック、および補助ツールに関するプロのプログラマーからのヒントです。

パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能
本稿では、前の記事で設定した目標に基づいて改良された総当たり攻撃バージョンについてお話します。エキスパートアドバイザーをこの方法で取得した設定で使用して、このトピックをできるだけ広くカバーするようにします。新しいプログラムバージョンも添付されています。

グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか
本稿では、グリッドおよびマーチンゲール取引に適用される機械学習手法について説明します。驚いたことに、世界中のネットではこのアプローチはほとんどまたはまったくカバーされていません。記事を読んだ後は、自分自身の自動売買ボットを作成することができるでしょう。

取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン
コンピュータービジョンを使用すると、価格チャートと指標の視覚的表現に関してニューラルネットワークを訓練できるようになります。この方法では、ニューラルネットワークにデジタルでフィードする必要がないため、テクニカル指標全体でより幅広い操作が可能になります。

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線
本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。

CatBoostアルゴリズムを使用した外国為替市場の季節によるパターンの特定
本稿では、時間フィルタを使用した機械学習モデルの作成について検討し、このアプローチの有効性について説明します。人的要因はモデルに特定の曜日の特定の時間に取引するように指示するだけで排除できるようになっています。パターン検索は、別のアルゴリズムで提供できます。

ニューラルネットワークが簡単に(第9部):作業の文書化
長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。

パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。

トレーディングにおけるニューラルネットワークの実用化。 Python (パートI)
今回は、Pythonによるディープニューラルネットワークのプログラミングに基づいたトレードシステムの実装を一つ一つ分析します。 Googleが開発した機械学習ライブラリ「TensorFlow」を使って行います。 また、ニューラルネットワークの記述にはKerasライブラリを使用します。

トランスダクション・アクティブ機械学習におけるスロープブースト
本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.

MetaTrader5のWebSocket
MQL5 APIが更新されてネットワーク機能が導入される前は、MetaTraderプログラムでは、WebSocketベースのサービスに接続してインターフェイスする機能が制限されていました。しかしもちろん、これはすべて変わっています。本稿では、純粋なMQL5でのWebSocketライブラリの実装について説明します。WebSocketプロトコルの簡単な説明とともに結果のライブラリの使用方法に関する手順のガイドが提示されます。