MQL5言語を使ったMetaTrader 5の統合に関する記事

icon

トレーダーはしばしば革新的なアプローチを要する、興味深いチャレンジに出会います。このカテゴリは、価格データとトレーディング結果を評価し、分析し、処理するための、決して思いもしなかったソリューションを提供する記事を特集します。記事は様々な統合ソリューションについて書かれており、データベースとICQの結合、OpenCLの使用、そしてソーシャルネットワーク、DelphiとC#の使用を含んでいます。

特別に用意された数学的なニューラルなパッケージ、さらにはもっと多くのものをどのように使うかを知るために読み進んでください。作者になりMQL5.communityのメンバーと独自のアイデアを共有してください。

新しい記事を追加
最新 | ベスト
preview
MQL5の圏論(第5回)等化子

MQL5の圏論(第5回)等化子

圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
MQL5の圏論(第3回)

MQL5の圏論(第3回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
母集団最適化アルゴリズム:ハーモニーサーチ(HS)

母集団最適化アルゴリズム:ハーモニーサーチ(HS)

今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
preview
母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)

今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。
preview
母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)

GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。
preview
MQL5クックブック - マクロ経済イベントデータベース

MQL5クックブック - マクロ経済イベントデータベース

この記事では、SQLiteエンジンに基づいてデータベースを処理する可能性について説明します。CDatabaseクラスは、OOP原則を便利かつ効率的に使用するために作成されました。その後、マクロ経済イベントのデータベースの作成と管理に関与しています。この記事では、CDatabaseクラスの複数のメソッドを使用する例を示します。
preview
母集団最適化アルゴリズム:細菌採餌最適化(BFO)

母集団最適化アルゴリズム:細菌採餌最適化(BFO)

大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。
preview
母集団最適化アルゴリズム:侵入雑草最適化(IWO)

母集団最適化アルゴリズム:侵入雑草最適化(IWO)

雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。
preview
MQL5の圏論(第2回)

MQL5の圏論(第2回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
MQL5の圏論(第1回)

MQL5の圏論(第1回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析

知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析

今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。
母集団最適化アルゴリズム
母集団最適化アルゴリズム

母集団最適化アルゴリズム

最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。
preview
ニューラルネットワークが簡単に(第26部):強化学習

ニューラルネットワークが簡単に(第26部):強化学習

機械学習の手法の研究を続けます。今回からは、もう1つの大きなテーマである「強化学習」を始めます。この方法では、モデルは問題を解決するためのある種の戦略を設定することができます。この強化学習の特性は、取引戦略を構築する上で新たな地平を切り開くものと期待されます。
preview
MQL5での行列およびベクトル演算

MQL5での行列およびベクトル演算

行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。
preview
ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善

前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。
preview
DirectXチュートリアル(第I部): 最初の三角形の描画

DirectXチュートリアル(第I部): 最初の三角形の描画

これはDirectXの紹介記事で、APIを使用した操作の詳細について説明しており、コンポーネントが初期化される順序を理解するのに役立つはずです。この記事には、DirectXを使用して三角形をレンダリングするためのMQL5スクリプトを作成する方法の例が含まれています。
preview
MetaTrader 5のWebSocket — WindowsAPIの使用

MetaTrader 5のWebSocket — WindowsAPIの使用

この記事では、WinHttp.dllを使用してMetaTrader 5プログラム用のWebSocketクライアントを作成します。クライアントは最終的にクラスとして実装され、Binary.com WebSocketAPIに対してもテストされます。
preview
MQL5でのAutoItの使用

MQL5でのAutoItの使用

簡単に説明すると、この記事では、MQL5をAutoItと統合することによってMetraTrader5ターミナルのスクリプトを作成します。その中で、ターミナルのユーザーインターフェイスを操作することによってさまざまなタスクを自動化する方法を説明し、AutoItXライブラリを使用するクラスも紹介します。
preview
多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合

多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合

MQLとの統合を開発するために利用できるPythonパッケージが存在し、データの探索、作成、機械学習モデルの使用などのさまざまな機会がもたらされます。MQL5に組み込まれているPython統合により、単純な線形回帰から深層学習モデルまで、さまざまなソリューションを作成できます。開発環境を設定して準備する方法と、いくつかの機械学習ライブラリを使用する方法を見てみましょう。
preview
パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能

パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能

本稿では、前の記事で設定した目標に基づいて改良された総当たり攻撃バージョンについてお話します。エキスパートアドバイザーをこの方法で取得した設定で使用して、このトピックをできるだけ広くカバーするようにします。新しいプログラムバージョンも添付されています。
preview
パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線

本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。
preview
ニューラルネットワークが簡単に(第9部):作業の文書化

ニューラルネットワークが簡単に(第9部):作業の文書化

長い道のりでした。ライブラリ内のコードはどんどん増えてきており、すべてのリンクと依存関係を追跡することが困難になっています。したがって、以前に作成したコードのドキュメントを作成し、新しい手順ごとに更新し続けることをお勧めします。適切に準備された文書化は、作業の整合性を確認するのに役立ちます。
preview
トランスダクション・アクティブ機械学習におけるスロープブースト

トランスダクション・アクティブ機械学習におけるスロープブースト

本記事では、実データを活用したアクティブな機械学習手法について考察するとともに、その長所と短所について考察していきます. おそらく、いくつかの方法が有用であるとわかるでしょうし、機械学習モデルのアーセナルにインクルードするでしょう. トランスダクションは、サポートベクターマシン(SVM)の共同発明者であるVladimir Vapnik氏が紹介しています.
preview
MetaTrader5のWebSocket

MetaTrader5のWebSocket

MQL5 APIが更新されてネットワーク機能が導入される前は、MetaTraderプログラムでは、WebSocketベースのサービスに接続してインターフェイスする機能が制限されていました。しかしもちろん、これはすべて変わっています。本稿では、純粋なMQL5でのWebSocketライブラリの実装について説明します。WebSocketプロトコルの簡単な説明とともに結果のライブラリの使用方法に関する手順のガイドが提示されます。