
MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)
MQL5で動かせるGUIを作成するための包括的なガイドで、取引戦略やユーティリティでのダイナミックなデータ表現の力を解き放ちましょう。チャートイベントのコアコンセプトに触れ、同じチャート上にシンプルで複数の移動可能なGUIをデザインし、実装する方法を学びます。この記事では、GUIに要素を追加し、機能性と美しさを向上させるプロセスについても説明します。

MQL5の圏論(第10回):モノイド群
MQL5における圏論の実装についての連載を続けます。ここでは、モノイド集合を正規化して、より幅広いモノイド集合とデータ型にわたって比較しやすくする手段としてモノイド群を見ていきます。

リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。

多層パーセプトロンとバックプロパゲーションアルゴリズム(その3):ストラテジーテスターとの統合 - 概要(I)
多層パーセプトロンは、非線形分離可能な問題を解くことができる単純なパーセプトロンを進化させたものです。バックプロパゲーションアルゴリズムと組み合わせることで、このニューラルネットワークを効果的に学習させることができます。多層パーセプトロンとバックプロパゲーション連載第3回では、このテクニックをストラテジーテスターに統合する方法を見ていきます。この統合により、取引戦略を最適化するためのより良い意思決定を目的とした複雑なデータ分析が可能になります。この記事では、このテクニックの利点と問題点について説明します。

MQL5の圏論(第7回):多重集合、相対集合、添字集合
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MetaTrader 5をPostgreSQLに接続する方法
この記事では、MQL5コードをPostgresデータベースに接続するための4つの方法について説明し、そのうちの1つであるREST APIの開発環境をWindows Subsystem For Linux (WSL)を使用して設定するためのステップバイステップのチュートリアルを提供します。APIのデモアプリが、データを挿入してそれぞれのテーブルにクエリを実行するための対応MQL5コード、このデータを使用するためのデモエキスパートアドバイザー(EA)とともに提供されます。

MQL5の圏論(第5回)等化子
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MQL5の圏論(第3回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

母集団最適化アルゴリズム:ハーモニーサーチ(HS)
今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)
GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。

MQL5クックブック - マクロ経済イベントデータベース
この記事では、SQLiteエンジンに基づいてデータベースを処理する可能性について説明します。CDatabaseクラスは、OOP原則を便利かつ効率的に使用するために作成されました。その後、マクロ経済イベントのデータベースの作成と管理に関与しています。この記事では、CDatabaseクラスの複数のメソッドを使用する例を示します。

母集団最適化アルゴリズム:細菌採餌最適化(BFO)
大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。

母集団最適化アルゴリズム:侵入雑草最適化(IWO)
雑草がさまざまな条件で生き残る驚くべき能力は、強力な最適化アルゴリズムのアイデアになっています。IWO(Invasive Weed Optimization)は、以前にレビューされたものの中で最高のアルゴリズムの1つです。

ティッカーテープパネルの作成:基本バージョン
ここでは、通常取引所の相場表示に使われるプライスティッカーを使った画面を作成する方法を紹介します。複雑な外部プログラミングを使わず、MQL5だけでやってみようと思います。

母集団最適化アルゴリズム:ホタルアルゴリズム(FA)
今回は、ホタルアルゴリズム(FA)という最適化手法について考えてみます。修正により、このアルゴリズムは部外者から真の評価表リーダーへと変貌を遂げました。

MQL5の圏論(第2回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

MQL5の圏論(第1回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。


母集団最適化アルゴリズム
最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。

ニューラルネットワークが簡単に(第26部):強化学習
機械学習の手法の研究を続けます。今回からは、もう1つの大きなテーマである「強化学習」を始めます。この方法では、モデルは問題を解決するためのある種の戦略を設定することができます。この強化学習の特性は、取引戦略を構築する上で新たな地平を切り開くものと期待されます。

ニューラルネットワークが簡単に(第25部):転移学習の実践
前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。

MQL5での行列およびベクトル演算
行列とベクトルがMQL5に導入され、数学的な解決策による効率的な操作が可能になりました。これらの新しい型は、数学表記に近い簡潔でわかりやすいコードを作成するための組み込みメソッドを提供します。配列は広範な機能を提供しますが、行列の方がはるかに効率的である場合が多くあります。

ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善
前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング
機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。

一からの取引エキスパートアドバイザーの開発(第16部):Web上のデータにアクセスする(II)
Webからエキスパートアドバイザー(EA)にデータを入力する方法はそれほど明らかにはわかりません。MetaTrader 5が提供するすべての可能性を理解しなければ、そう簡単にはいきません。

一からの取引エキスパートアドバイザーの開発(第15部):Web上のデータにアクセスする(I)
MetaTrader5ではどのようにオンラインデータにアクセスするのでしょうか。Web上にはたくさんのサイトや場所があり、膨大な量の情報が掲載されています。知るべきことは、どこを調べて、この情報をどのように使用するのが最善かということです。

DirectXチュートリアル(第I部): 最初の三角形の描画
これはDirectXの紹介記事で、APIを使用した操作の詳細について説明しており、コンポーネントが初期化される順序を理解するのに役立つはずです。この記事には、DirectXを使用して三角形をレンダリングするためのMQL5スクリプトを作成する方法の例が含まれています。

MetaTrader 5のWebSocket — WindowsAPIの使用
この記事では、WinHttp.dllを使用してMetaTrader 5プログラム用のWebSocketクライアントを作成します。クライアントは最終的にクラスとして実装され、Binary.com WebSocketAPIに対してもテストされます。

MQL5でのAutoItの使用
簡単に説明すると、この記事では、MQL5をAutoItと統合することによってMetraTrader5ターミナルのスクリプトを作成します。その中で、ターミナルのユーザーインターフェイスを操作することによってさまざまなタスクを自動化する方法を説明し、AutoItXライブラリを使用するクラスも紹介します。

多層パーセプトロンとバックプロパゲーションアルゴリズム(第II部): Pythonでの実装とMQL5との統合
MQLとの統合を開発するために利用できるPythonパッケージが存在し、データの探索、作成、機械学習モデルの使用などのさまざまな機会がもたらされます。MQL5に組み込まれているPython統合により、単純な線形回帰から深層学習モデルまで、さまざまなソリューションを作成できます。開発環境を設定して準備する方法と、いくつかの機械学習ライブラリを使用する方法を見てみましょう。

プロのプログラマーからのヒント(第I部): コードの保存、デバッグ、コンパイルプロジェクトとログの操作
プログラミングを容易にする方法、テクニック、および補助ツールに関するプロのプログラマーからのヒントです。

パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能
本稿では、前の記事で設定した目標に基づいて改良された総当たり攻撃バージョンについてお話します。エキスパートアドバイザーをこの方法で取得した設定で使用して、このトピックをできるだけ広くカバーするようにします。新しいプログラムバージョンも添付されています。

グリッドおよびマーチンゲール取引システムでの機械学習 - あなたはそれに賭けますか
本稿では、グリッドおよびマーチンゲール取引に適用される機械学習手法について説明します。驚いたことに、世界中のネットではこのアプローチはほとんどまたはまったくカバーされていません。記事を読んだ後は、自分自身の自動売買ボットを作成することができるでしょう。

取引におけるニューラルネットワークの実用化(第2部)コンピュータービジョン
コンピュータービジョンを使用すると、価格チャートと指標の視覚的表現に関してニューラルネットワークを訓練できるようになります。この方法では、ニューラルネットワークにデジタルでフィードする必要がないため、テクニカル指標全体でより幅広い操作が可能になります。