
MQL5で取引管理者パネルを作成する(第2回):応答性と迅速なメッセージングの強化
この記事では、以前作成した管理パネルの応答性を強化します。さらに、取引シグナルの文脈におけるクイックメッセージングの重要性についても検討します。

Connexus入門(第1回):WebRequest関数の使い方
この記事は、MQL5でHTTPリクエストを容易にするための「Connexus」と呼ばれるライブラリの開発シリーズの始まりです。このプロジェクトの目標は、エンドユーザーにこの機会を提供し、このヘルパーライブラリーの使い方を示すことです。学習を容易にし、将来の発展の可能性を提供するために、できるだけシンプルにすることを意図しました。

MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する
この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター
PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。

多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。

MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上
の記事では、MQL5からTelegramへのメッセージおよびスクリーンショット送信に使用されている既存コードを、再利用可能なモジュール関数へと整理し、リファクタリングをおこないます。これによりプロセス全体が効率化され、複数インスタンスでの実行効率が高まるだけでなく、コードの管理も容易になります。

MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する
この記事では、チャートのスクリーンショットを画像データとしてエンコードし、HTTPリクエストを通じてTelegramチャットに送信するMQL5のエキスパートアドバイザー(EA)を作成します。この画像のエンコードと送信の統合によって、既存のMQL5-Telegramシステムが強化され、Telegram上で直接視覚的な取引洞察を提供できるようになります。

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。

MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。

ニュース取引が簡単に(第3回):取引の実施
この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。

MQL5の統合:Python
Pythonは、特に金融、データサイエンス、人工知能、機械学習の分野で多くの特徴を持つ、よく知られた人気のプログラミング言語です。また、Pythonは取引にも有効な強力なツールです。MQL5では、この強力な言語を統合して使用することで、目的を効果的に達成することができます。本記事では、Pythonの基本的な情報を学んだ後、MQL5でPythonを統合して使用する方法を紹介します。

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)
良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。

彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。

多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する
エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。

MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信
この記事では、移動平均クロスオーバーシグナルをTelegramに送信するMQL5-Telegram統合エキスパートアドバイザー(EA)を作成します。移動平均クロスオーバーから売買シグナルを生成し、MQL5で必要なコードを実装し、統合がシームレスに機能するようにするプロセスを詳しく説明します。その結果、リアルタイムの取引アラートをTelegramのグループチャットに直接提供するシステムが完成します。

MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信
この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。

MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。

ソケットを使ったツイッターのセンチメント分析
この革新的な取引ボットは、MetaTrader 5とPythonを統合し、リアルタイムのソーシャルメディアセンチメント分析を活用して自動売買の意思決定をおこないます。特定の金融商品に関連するツイッターのセンチメントを分析することで、ボットはソーシャルメディアのトレンドを実用的な取引シグナルに変換します。ソケット通信によるクライアントサーバーアーキテクチャを採用しており、MT5の取引機能とPythonのデータ処理能力とのシームレスな相互作用を実現しています。

Candlestick Trend Constraintモデルの構築(第7回):EA開発モデルの改良
今回は、エキスパートアドバイザー(EA)開発のための指標の詳細な準備について掘り下げていきます。議論の中では、現行バージョンの指標にさらなる改良を加えることで、その精度と機能性の向上を図ります。さらに、前バージョンがエントリポイントの識別に限られていた制約に対応するため、新たにエグジットポイントを特定する機能を導入します。

多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集
EA開発の主な段階を概説しましょう。最初におこなうべき重要な作業の1つは、開発した取引戦略のインスタンスを最適化することです。最適化プロセスにおいて、テスターが通過したパスに関する必要な情報を一箇所に集約してみましょう。

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理
進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。

ブレインストーム最適化アルゴリズム(第1部):クラスタリング
この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。

因果推論における時系列クラスタリング
機械学習におけるクラスタリングアルゴリズムは、元データを類似した観察結果を持つグループに分けることができる重要な教師なし学習法です。これらのクラスタを用いることで、特定の市場クラスタを分析したり、新しいデータを基に最も安定したクラスタを探索したり、因果関係を推定したりすることが可能です。本稿では、Pythonによる時系列クラスタリングのための独自の手法を提案します。

Candlestick Trend Constraintモデルの構築(第6回):オールインワン統合
一つの大きな課題は、異なる機能を持つ同じプログラムを、同じ通貨ペアに対して複数のチャートウィンドウで実行し、管理することです。この問題を解決するには、複数の機能を一つのメインプログラムに統合する方法を検討する必要があります。さらに、プログラムの設定を操作ログに出力する方法や、成功したシグナルのブロードキャストをチャートインターフェイス上に表示する方法についても解説します。連載が進むにつれ、この記事でさらに詳しい情報を提供していきます。

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択
以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。

MQLプロジェクトでJSON Data APIを使用する
MetaTraderにはないデータを使用できることを想像してみてください。価格分析とテクニカル分析による指標からデータを得るだけです。取引力を一段と高めるデータにアクセスできることを想像してみてください。APIデータを通して他のソフトウェア、マクロ分析手法、超高度ツールの出力をMetaTraderを通じてミックスすれば、MetaTraderソフトウェアのパワーを倍増させることができます。この記事では、APIの使い方を教え、便利で価値のあるAPIデータサービスを紹介します。

母集団最適化アルゴリズム:群鳥アルゴリズム(BSA)
本稿では、自然界における鳥の群れの集団的な相互作用に着想を得た、鳥の群れに基づくアルゴリズム(BSA)を探求します。飛行、警戒、採餌行動の切り替えなど、BSAの個体にはさまざまな探索戦略があるため、このアルゴリズムは多面的なものとなっています。鳥の群れ、コミュニケーション、適応性、先導と追随の原理を利用し、効率的に最適解を見つけます。

MQL5でインタラクティブなグラフィカルユーザーインターフェイスを作成する(第1回):パネルの製作
この記事では、MetaQuotes Language 5 (MQL5)を使用して、グラフィカルユーザーインターフェイス(GUI)パネルを作成し、実装するための基本的な手順について説明します。カスタムユーティリティパネルは、一般的なタスクを簡素化し、重要な取引情報を可視化することで、取引におけるユーザーのインタラクションを向上させます。カスタムパネルを作成することで、トレーダーはワークフローを合理化し、取引操作の時間を節約することができます。

母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)
(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)
本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。

PythonとMQL5でロボットを開発する(第1回):データ前処理
機械学習に基づく自動売買ロボットの開発の詳細なガイドです。連載第1回は、データと特徴量の収集と準備についてです。プロジェクトは、Pythonプログラミング言語とライブラリ、およびMetaTrader 5プラットフォームを使用して実装されます。

最適化アルゴリズムの効率における乱数生成器の品質の役割
この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)
本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。

因果推論における傾向スコア
本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。

母集団最適化アルゴリズム:極値から抜け出す力(第I部)
本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス
この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。

多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存
多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。

Rest APIを統合したMQL5強化学習エージェントの開発(第4回):MQL5でクラス内の関数を整理する
この記事では、MQL5における手続き型コーディングからオブジェクト指向プログラミング(OOP)への移行について、REST APIとの統合を中心に説明します。今日は、HTTPリクエスト関数(GETとPOST)をクラスにまとめる方法について説明します。コードのリファクタリングについて詳しく見ていき、孤立した関数をクラスメソッドに置き換える方法を紹介します。記事には実践的な例とテストが含まれています。

MetaTrader 5で隠れマルコフモデルを統合する
この記事では、Pythonを使用して学習した隠れマルコフモデルをMetaTrader 5アプリケーションに統合する方法を示します。隠れマルコフモデルは、時系列データをモデル化するために使用される強力な統計的ツールであり、モデル化されるシステムは観測不可能な(隠れた)状態によって特徴付けられます。HMMの基本的な前提は、ある時刻にある状態にある確率は、その前のタイムスロットにおけるプロセスの状態に依存するということです。