
MetaTrader 5でのモンテカルロ並べ替え検定
この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。

プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発
オブジェクト指向プログラミングのパラダイムとMQL5コードへの応用について学びます。この第2回目の記事では、オブジェクト指向プログラミングの具体的な内容をより深く掘り下げ、実践的な例を通して実体験を提供します。EMA指標とローソク足価格データを使用した、手続き型プライスアクションエキスパートアドバイザー(EA)をオブジェクト指向コードに変換する方法を学びます。

リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)
バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。

母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。


DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール
この記事では、水平スクロールバーオブジェクト機能の開発を完成します。また、スクロールバーのスライダーを動かしたり、マウスホイールを回転させたりしてコンテナの内容をスクロールできるようにするほか、MQL5の新しい注文実行ポリシーや新しいランタイムエラーコードを考慮したライブラリへの追加もおこないます。


DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。

Pythonを使ったEAとバックテストのための感情分析とディープラーニング
この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。


DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。

初心者からエキスパートへ:サポートとレジスタンスの強度指標(SRSI)
本記事では、MQL5プログラミングを活用して市場の価格レベルを正確に特定し、弱いレベルと強いレベルを見分ける方法についての知見を共有します。さらに、実用的なサポートおよびレジスタンス強度インジケーター(SRSI)を完全に開発していきます。

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。

ビジュアルプログラミング言語DRAKON:MQL開発者と顧客のコミュニケーションツール
DRAKONは、ロシアの宇宙プロジェクト(例えば、「Buran」再利用可能宇宙船プロジェクト)のプログラマーと、異なる分野の専門家(生物学者、物理学者、エンジニアなど)との対話を簡素化するために設計されたビジュアルプログラミング言語です。この記事では、DRAKONが、コードに触れたことがない人にとっても、アルゴリズムの作成にアクセスしやすく、直感的にし、また、顧客が取引ロボットを注文する際に自分の考えを説明しやすくし、複雑な関数でプログラマーのミスを少なくする方法についてお話します。

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ
本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。

母集団最適化アルゴリズム:魚群検索(FSS)
魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。

DoEasy-コントロール(第24部):ヒント補助WinFormsオブジェクト
今回は、すべてのWinFormsライブラリオブジェクトの基本オブジェクトとメインオブジェクトを指定するロジックを見直し、新しいヒント基本オブジェクトとその派生クラスのいくつかを開発して、区切りの移動可能な方向を示すことにします。

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)
前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。

DoEasy-コントロール(第15部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、タブ処理メソッド
この記事では、TabControl WinFormオブジェクトの作業を続けます。タブフィールドオブジェクトクラスを作成して複数の行にタブヘッダーを配置できるようにし、オブジェクトタブを処理するメソッドを追加します。

DoEasy - コントロール(第5部):WinForms基本オブジェクト、Panelコントロール、AutoSizeパラメータ
本稿では、すべてのライブラリWinFormsオブジェクトの基本オブジェクトを作成し、Panel WinFormsオブジェクトのAutoSizeプロパティ(オブジェクトの内部コンテンツに合わせた自動サイズ変更)の実装を開始する予定です。

DoEasy - コントロール(第26部):ToolTip WinFormsオブジェクトの最終確認とProgressBarの開発開始
今回は、ツールチップコントロールの開発を完了し、ProgressBar WinFormsオブジェクトの開発を開始します。オブジェクトで作業しながら、コントロールやそのコンポーネントをアニメーション化するための普遍的な機能を開発する予定です。

時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。


DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス
この記事では、ライブラリの一部で使用されるアニメーションの原則を定義します。また、画像の一部をコピーして指定したフォームオブジェクトの場所に貼り付け、画像が重ねられるフォームの背景の一部を保存して復元するクラスを開発します。


リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する
ここでは、リプレイシステムで、調整されているかどうかを気にすることなく、より信頼性の高いデータ(取引されたティック)を使用する方法を見ていきます。

知っておくべきMQL5ウィザードのテクニック(第17回):多通貨取引
ウィザードを介してEAが組み立てられた場合、デフォルトでは複数の通貨をまたいだ取引は利用できません。トレーダーが一度に複数の銘柄から自分のアイデアをテストする際に、2つの可能なトリックを検討します。

プログラミングパラダイムについて(第1部):プライスアクションエキスパートアドバイザー開発の手続き型アプローチ
プログラミングパラダイムとMQL5コードへの応用について学びます。この記事では、手続き型プログラミングの具体的な方法について、実践的な例を通して説明します。EMA指標とローソク足の価格データを使って、プライスアクションエキスパートアドバイザー(EA)を開発する方法を学びます。さらに、この記事では関数型プログラミングのパラダイムについても紹介しています。

古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略
MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。


DoEasyライブラリのグラフィックス(第94部): 複合グラフィカルオブジェクトの移動と削除
本稿では、さまざまな複合グラフィカルオブジェクトイベントの開発を開始します。また、複合グラフィカルオブジェクトの移動と削除についても部分的に検討します。実際、ここでは、前の記事で実装したものを微調整します。

DoEasyライブラリのグラフィックス(第98部):拡張された標準グラフィカルオブジェクトのピボットポイントの移動
本稿では、拡張された標準グラフィカルオブジェクトの開発を継続し、グラフィカルオブジェクトのピボットポイントの座標を管理するためのコントロールポイントを使用して、複合グラフィカルオブジェクトのピボットポイントを移動する機能を作成します。

初級から中級まで:配列と文字列(III)
この記事では2つの側面について考察します。まず、標準ライブラリを使ってバイナリ値を8進数、10進数、16進数などの表現に変換する方法について説明します。次に、これまでに習得した知識を活用して、秘密のフレーズに基づいてパスワードの桁数をどのように決定できるかについて解説します。

リプレイシステムの開発 - 市場シミュレーション(第17回):ティックそしてまたティック(I)
ここでは、非常に興味深いものを実装する方法を見ていきますが、同時に、非常にわかりにくい点があるため非常に難しくなります。起こり得る最悪の事態は、自分をプロだと思っている一部のトレーダーが、資本市場におけるこれらの概念の重要性について何も知らないことです。さて、ここではプログラミングに焦点を当てていますが、私たちが実装しようとしているものにとって最も重要なのは市場取引に伴う問題のいくつかを理解することです。

DoEasy - コントロール(第4部):パネルコントロールとPadding and Dockパラメータ
今回は、Paddingパラメータ(要素の四辺の内部インデント/マージン)とDockパラメータ(コンテナ内のオブジェクトの配置方法)の扱いを実装します。