学習中にニューロンを活性化する関数:高速収束の鍵は?
本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
リプレイシステムの開発(第78回):新しいChart Trade(V)
本記事では、受信側コードの一部の実装方法について解説します。ここでは、プロトコルの相互作用をテストし理解するためのエキスパートアドバイザー(EA)を実装します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
MQL5で自己最適化エキスパートアドバイザーを構築する(第12回):行列分解を用いた線形分類器の構築
本記事では、アルゴリズム取引における行列分解の強力な役割、特にMQL5アプリケーション内での活用について探ります。回帰モデルからマルチターゲット分類器まで、実際の例を通して、これらの手法が組み込みのMQL5関数を使ってどれほど容易に統合できるかを示します。価格の方向性を予測する場合でも、インジケーターの挙動をモデル化する場合でも、このガイドは行列手法を用いたインテリジェントな取引システム構築の強固な基盤を提供します。
カスタム市場センチメント指標の開発
本記事では、複数の時間足を用いて市場センチメントを判定し、強気、弱気、リスクオン、リスクオフ、中立のいずれかに分類するMarket Sentimentカスタムインジケーターの開発について解説します。多時間足分析を組み合わせることで、トレーダーは市場全体の偏りと短期的な動向をより明確に把握できるようになります。
MQL5で自己最適化エキスパートアドバイザーを構築する(第14回):フィードバックコントローラーにおけるデータ変換を調整パラメータとして捉える
前処理は非常に強力でありながら、しばしば軽視されがちな調整パラメータです。その存在は、より注目されるオプティマイザーや華やかなモデル構造の影に隠れています。しかし、前処理のわずかな改善は、利益やリスクに対して予想以上に大きな複利効果をもたらすことがあります。あまりにも多くの場合、このほとんど未踏の領域は単なるルーチン作業として扱われ、手段としてしか意識されません。しかし実際には、前処理は信号を直接増幅することもあれば、容易に破壊してしまうこともあるのです。
ログレコードをマスターする(第10回):抑制機能を実装してログの再表示を防ぐ
Logifyライブラリにおけるログ抑制システムを作成しました。本記事では、CLogifySuppressionクラスがどのようにコンソールのノイズを低減するかについて詳しく説明します。このクラスは、繰り返しや無関係なメッセージを回避するための設定可能なルールを適用します。また、外部設定フレームワーク、検証機構、包括的なテストについても取り上げ、ボットやインジケーター開発時のログ取得における堅牢性と柔軟性を確保しています。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(IX) - ニュース取引のための単一チャートでのマルチペア管理
ニュース取引では、ボラティリティが高まるため、非常に短時間で複数のポジションや通貨ペアを管理する必要があります。本記事では、News Headline EAにこの機能を統合することで、マルチペア取引の課題にどのように対応できるかを解説します。MQL5を用いたアルゴリズム取引により、マルチペア取引を効率的かつ強力に実現する方法を一緒に探っていきます。
MQL5でのデータベースの簡素化(第2回):メタプログラミングを使用してエンティティを作成する
前回の記事では、MQL5における#defineを活用した高度なメタプログラミング手法を検討し、テーブルや列のメタデータ(データ型、主キー、オートインクリメント、NULL許容など)を表現するエンティティを定義しました。これらの定義はTickORM.mqhに集約し、メタデータクラスを自動生成する仕組みを整えることで、SQLを直接記述することなくORMが効率的にデータ操作を実行できる基盤を構築しています。
プライスアクション分析ツールキットの開発(第40回):Market DNA Passport
本記事では、各通貨ペアが持つ固有のアイデンティティを、その過去のプライスアクションという視点から探ります。生物の設計図を記述するDNAの概念に着想を得て、本記事では市場にも同様の枠組みを適用し、プライスアクションを各通貨ペアのDNAとして扱います。ボラティリティ、スイング、リトレースメント、スパイク、セッション特性といった構造的挙動を分解することで、各ペアを他と区別する基礎的なプロファイルが浮かび上がります。このアプローチにより、市場行動に対するより深い洞察が得られ、トレーダーは各銘柄の特性に合った戦略を体系的に組み立てられるようになります。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(X) - ニュース取引のための多銘柄チャート表示
本日は、チャートオブジェクトを用いたマルチチャート表示システムを開発します。本システムの目的は、MQL5アルゴリズムを活用して、重要なニュース発表時などの高ボラティリティ期間におけるトレーダーの反応時間を短縮し、ニュース取引を支援することです。複数の主要通貨ペアを、統合的に監視できる、オールインワンのニュース取引環境を提供します。News Headline EAの開発は継続的に進化しており、完全自動システムを使用するトレーダーはもちろん、アルゴリズム補助による手動取引をおこなうトレーダーにとっても実用的な機能が追加されています。さらに知識や洞察、実践的なアイデアを深めたい方は、ぜひ本ディスカッションに参加して詳細をご覧ください。
カスタム口座パフォーマンス行列インジケーターの開発
このインジケーターは、口座エクイティ、損益、ドローダウンをリアルタイムで監視し、パフォーマンスダッシュボードとして可視化することで、規律の維持を促す役割を果たします。トレーダーが取引の一貫性を保ち、過剰取引を避け、自己勘定取引会社評価チャレンジ(プロップファームチャレンジ)のルールを遵守するための支援ツールとして機能します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(XI) - ニュース取引における相関
本記事では、金融相関の概念を活用して、主要な経済指標発表時に複数の通貨ペアを取引する際の判断効率を高める方法を検討します。特に、ニュースリリース時のボラティリティ上昇によるリスク増大という課題に焦点を当てます。
機械学習の限界を克服する(第4回):複数ホライズン予測による既約誤差の回避
機械学習は統計学や線形代数の観点から語られることが多いですが、本記事ではモデル予測を幾何学的に理解する視点に注目します。本記事で示したいのは、モデルはターゲットを直接近似しているのではなく、ターゲットを別の座標系に写像することで固有のずれを生み出し、その結果、避けがたい既約誤差が生じる点です。また本記事では、ターゲットとの直接比較ではなく、異なるホライズンにおけるモデルの予測同士を比較する複数ステップ予測の方が実務的かつ有効であることを提案します。この手法を取引モデルに適用すると、基礎モデルを変更することなく、収益性と予測精度が大幅に向上することを確認しました。
MQL 標準ライブラリエクスプローラー(第1回):CTrade、CiMA、CiATRによる紹介
MQL5標準ライブラリは、MetaTrader 5における取引アルゴリズム開発において重要な役割を果たします。本連載では、このライブラリを使いこなし、MetaTrader 5用の効率的な取引ツールをより簡単に作成する方法を身につけることを目指します。これには、カスタムのエキスパートアドバイザー(EA)、インジケーター、その他のユーティリティが含まれます。本日はその第一歩として、CTrade、CiMA、そしてCiATR クラスを用いたトレンドフォロー型のEAを開発します。これは初心者、熟練者を問わず、すべての開発者にとって非常に重要なテーマです。ぜひ本ディスカッションにご参加いただき、理解を深めてください。