
Desarrollo de un sistema de repetición (Parte 47): Proyecto Chart Trade (VI)
En este artículo finalizaremos el indicador Chart Trade, haciéndolo funcional hasta el punto de poder usarlo junto con algún Expert Advisor. Entonces, en este artículo finalizaremos el indicador Chart Trade, haciéndolo funcional hasta el punto de poder usarlo junto con algún Expert Advisor. Esto nos permitirá acceder y trabajar con el indicador, como si estuviera realmente vinculado al Expert Advisor. Pero lo haremos de una manera mucho más interesante que en el pasado.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 07): Primeras mejoras (II)
En el artículo anterior realizamos correcciones en algunos puntos y agregamos pruebas a nuestro sistema de repetición para garantizar la mayor estabilidad posible. Asimismo, comenzamos a crear y utilizar un archivo de configuración para dicho sistema.

Optimización del búfalo africano - African Buffalo Optimization (ABO)
El artículo se centra en el algoritmo de optimización del búfalo africano (ABO), un enfoque metaheurístico desarrollado en 2015 y basado en el comportamiento único de estos animales. El artículo detalla los pasos de implementación del algoritmo y su eficacia a la hora de encontrar soluciones a problemas complejos, lo cual lo convierte en una valiosa herramienta en el campo de la optimización.

Desarrollo de un sistema de repetición (Parte 49): Esto complica las cosas (I)
En este artículo complicaremos un poco las cosas. Utilizando lo que vimos en los artículos anteriores, comenzaremos a liberar el archivo de plantilla para que el usuario pueda utilizar una plantilla personalizada. Sin embargo, haré los cambios poco a poco, ya que también modificaré el indicador con el fin de reducir la carga de MetaTrader 5.

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte I)
El presente artículo presenta un experimento único cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficientemente los mínimos locales cuando la diversidad en la población es baja y alcanzar los máximos globales. Los trabajos en este campo nos permitirán comprender mejor qué algoritmos específicos pueden continuar con éxito la búsqueda a partir de las coordenadas fijadas por el usuario como punto de partida, y qué factores influyen en su éxito en este proceso.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 04): Haciendo ajustes (II)
Vamos continuar con el desarrollo del sistema y el control. Sin una forma de controlar el servicio, se complica avanzar y mejorar el sistema.

Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.

Clase básica de algoritmos de población como base para una optimización eficaz
El presente material supone un intento único de investigación para combinar una variedad de algoritmos de población en una sola clase y simplificar la aplicación de técnicas de optimización. Este enfoque no solo descubre oportunidades para el desarrollo de nuevos algoritmos, incluidas variantes híbridas, sino que también crea un banco de pruebas básico y versátil. Este banco se convertirá así en una herramienta clave para seleccionar el algoritmo óptimo según un problema específico.

Métodos de optimización de la biblioteca ALGLIB (Parte II)
En este artículo seguiremos analizando los métodos restantes de optimización de la biblioteca ALGLIB, prestando especial atención a su comprobación con funciones multivariantes complejas. Esto nos permitirá no solo evaluar el rendimiento de cada algoritmo, sino también identificar sus puntos fuertes y débiles en diferentes condiciones.

Desarrollamos un asesor experto multidivisa (Parte 15): Preparamos el asesor experto para el trading real
Al acercarnos gradualmente un asesor experto listo, debemos prestar atención a las cuestiones que son secundarias en la etapa de prueba de la estrategia comercial, pero que se vuelven importantes al pasar a la negociación real.

Desarrollo de un sistema de repetición (Parte 52): Esto complica las cosas (IV)
En este artículo vamos a cambiar el indicador de mouse para poder interactuar con el indicador de control, ya que esta se está realizando de forma errática.

Desarrollo de un sistema de repetición (Parte 73): Una comunicación inusual (II)
En este artículo, veremos cómo transferir información en tiempo real entre el indicador y el servicio, y comprenderemos por qué pueden surgir problemas al modificar el timeframe y cómo resolverlos correctamente. Como bono, tendrás acceso a la última versión de la aplicación de repetición/simulador. El contenido es exclusivamente didáctico y no debe utilizarse con otros fines.

Algoritmo de optimización de reacciones químicas (CRO) (Parte II): Ensamblaje y resultados
En la segunda parte, reuniremos los operadores químicos en un único algoritmo y presentaremos un análisis detallado de sus resultados. Descubramos cómo el método de optimización de reacciones químicas (CRO) aborda la solución de problemas complejos en funciones de prueba.

Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)
La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.

Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)
Gran parte de las personas que quieren, o desean aprender a programar, no tienen en realidad idea de lo que están haciendo. Lo que hacen es intentar crear las cosas de una determinada manera. Sin embargo, cuando programamos no estamos realmente intentando crear una solución. Si intentas hacerlo de esta manera, generarás más problemas que soluciones. Aquí haremos algo un poco más avanzado, y por consecuencia diferente.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados
Aquí veremos cómo accionar eventos personalizados y mejorar la cuestión de cómo el indicador informa del estado del servicio de repetición/simulación.

Algoritmo de optimización basado en ecosistemas artificiales — Artificial Ecosystem-based Optimization (AEO)
El artículo analiza el algoritmo metaheurístico AEO que modela las interacciones entre los componentes del ecosistema mediante la creación de una población inicial de soluciones y la aplicación de estrategias de actualización adaptativas, y detalla las etapas de funcionamiento del AEO, incluidas las fases de consumo y descomposición, así como diversas estrategias de comportamiento de los agentes. El artículo presenta las peculiaridades y ventajas de este algoritmo.

Indicador personalizado: Trazado de puntos de entradas parciales en cuentas netting
En este artículo, exploraremos una forma interesante y diferente de crear un indicador en MQL5. En lugar de centrarnos en una tendencia o patrón gráfico, el objetivo será gestionar nuestras propias posiciones, incluyendo las entradas y salidas parciales. Utilizaremos intensivamente matrices dinámicas y algunas funciones comerciales (Trade) relacionadas con el historial de transacciones y las posiciones abiertas para indicar en el gráfico dónde se llevaron a cabo estas operaciones.

Simulación de mercado (Parte 01): Orden cruzada (I)
A partir de este artículo, iniciaremos la segunda fase, que tratará la cuestión del sistema de repetición/simulación de mercado. Entonces, comenzaremos mostrando una posible solución para el cruce de órdenes. Esta solución que presentaré no es definitiva, sino una propuesta para el problema que aún será necesario abordar próximamente.

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)
Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.

Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)
Este artículo presenta el Algoritmo de Irrigación Artificial (ASHA), un nuevo método metaheurístico desarrollado para resolver problemas generales de optimización. Basado en la modelización de los procesos de flujo y almacenamiento del agua, este algoritmo construye el concepto de un campo ideal en el que cada unidad de recurso (agua) es invocada para encontrar una solución óptima. Hoy descubriremos cómo el ASHA adapta los principios de flujo y acumulación para asignar eficazmente los recursos en el espacio de búsqueda, y también veremos su aplicación y los resultados de sus pruebas.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 08): Bloqueo del indicador
En este artículo te mostraré cómo bloquear un indicador, simplemente utilizando el lenguaje MQL5, de una forma muy interesante y sorprendente.

Desarrollo de un sistema de repetición (Parte 56): Adecuación de los módulos
Aunque los módulos se comunican de manera adecuada, existe un error al intentar utilizar el indicador de mouse en el servicio de repetición. Necesitamos corregir esto ahora, antes de pasar al siguiente paso. Además, se ha corregido una incidencia en el código del indicador de mouse. Esta versión finalmente se ha vuelto estable y está debidamente finalizada.

Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica
En este artículo, seguiremos profundizando en la aplicación del algoritmo ACMO (Atmospheric Cloud Model Optimisation). En particular, discutiremos dos aspectos clave: el movimiento de las nubes hacia regiones de bajas presiones y la modelización del proceso de lluvia, incluida la inicialización de las gotas y su distribución entre las nubes. También analizaremos otras técnicas que desempeñan un papel importante a la hora de gestionar el estado de las nubes y garantizar su interacción con el entorno.

Desarrollo de un sistema de repetición (Parte 46): Proyecto Chart Trade (V)
¿Cansado de perder tiempo buscando ese archivo que es necesario para que tu aplicación funcione? ¿Qué tal si incluimos todo en el ejecutable? Así nunca perderás tiempo buscando las cosas. Sé que muchos utilizan exactamente esa forma de distribuir y guardar las cosas. Pero existe una manera mucho más adecuada. Al menos en lo que respecta a la distribución de ejecutables y almacenamiento de los mismos. La forma que explicaré aquí, puede ser de gran ayuda. Ya que puedes usar el propio MetaTrader 5 como un gran ayudante, así como el MQL5. No es algo tan complejo ni difícil de entender.

Desarrollo de un sistema de repetición (Parte 57): Diseccionamos el servicio de prueba
Un último detalle: Aunque no se incluye en este artículo, explicaré el código del servicio que se estará utilizando en el próximo, ya que usaremos este mismo código como trampolín para lo que realmente estamos desarrollando. Así que ten un poco de paciencia y espera el próximo artículo, pues las cosas se están poniendo cada día más interesantes.

Métodos de William Gann (Parte III): ¿Funciona la astrología?
¿Las posiciones de los planetas y las estrellas afectan los mercados financieros? Armémonos de estadísticas y big data y embarquémonos en un viaje apasionante hacia el mundo donde las estrellas y los gráficos bursátiles se cruzan.

Características del Wizard MQL5 que debe conocer (Parte 37): Regresión de procesos gaussianos con núcleos Matérn y lineales
Los núcleos lineales son la matriz más simple de su tipo utilizada en el aprendizaje automático para regresión lineal y máquinas de vectores de soporte. Por otro lado, el kernel Matérn es una versión más versátil de la función de base radial que analizamos en un artículo anterior, y es apto para mapear funciones que no son tan suaves como asumiría la RBF. Creamos una clase de señal personalizada que utiliza ambos núcleos para pronosticar condiciones largas y cortas.

Simulación de mercado (Parte 02): Orden cruzada (II)
A diferencia de lo que se vio en el artículo anterior, aquí vamos a hacer el control de selección en el Asesor Experto. Aunque esta no es aún una solución definitiva, nos servirá por ahora. Así que acompaña el artículo para entender cómo implementar una de las soluciones posibles.

Desarrollo de un sistema de repetición (Parte 55): Módulo de control
En este artículo, implementaremos el indicador de control de manera que pueda integrarse en el sistema de mensajes que está en desarrollo. Aunque no es algo muy complejo de hacer, es necesario entender algunos detalles sobre cómo inicializar este módulo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)
En este artículo, analizaremos las modificaciones necesarias para que el sistema de repetición/simulación pueda operar de manera más eficiente y segura. También mostraré algo de interés para quienes deseen aprovechar al máximo el uso de clases. Además, abordaré un problema específico de MQL5 que reduce el rendimiento del código al trabajar con clases y explicaré cómo resolverlo.

Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)
Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.

Búsqueda con restricciones — Tabu Search (TS).
En este artículo se analiza el algoritmo de búsqueda tabú, uno de los primeros y más conocidos métodos de la metaheurística. Hoy mostraremos con detalle cómo funciona el algoritmo, empezando por la selección de una solución inicial y la exploración de las opciones vecinas, centrándonos en el uso de la lista tabú. El artículo abarcará los aspectos clave del algoritmo y sus características.

Desarrollo de un sistema comercial basado en el libro de órdenes (Parte I): el indicador
El libro de órdenes —Depth of Market— es, sin duda, un elemento muy relevante para la ejecución de operaciones rápidas, especialmente en algoritmos de alta frecuencia (HFT). En esta serie de artículos, exploraremos este tipo de evento comercial que podemos obtener a través del bróker en muchos de los símbolos negociados. Empezaremos con un indicador en el que se pueden configurar la paleta de colores, la posición y el tamaño del histograma que se mostrará directamente en el gráfico. También veremos cómo generar eventos BookEvent para probar el indicador en condiciones específicas. Otros posibles temas que trataremos en artículos futuros son el almacenamiento de estas distribuciones de precios y las formas de utilizarlas en el simulador de estrategias.

Características del Wizard MQL5 que debe conocer (Parte 14): Previsión multiobjetivo de series temporales con STF
La fusión espacio-temporal, que utiliza métricas espaciales y temporales en la modelización de datos, es útil sobre todo en teledetección y otras muchas actividades visuales para comprender mejor nuestro entorno. Gracias a un artículo publicado, adoptamos un enfoque novedoso en su uso examinando su potencial para los comerciantes.

Desarrollo de un sistema de repetición (Parte 58): Volvemos a trabajar en el servicio
Después de haber tomado un descanso en el desarrollo y perfeccionamiento del servicio usado en la repetición/simulación, retomaremos el trabajo en él. Ahora que no utilizaremos algunos recursos, como las variables globales del terminal, es necesario reestructurar por completo algunas partes de él. No se preocupen, este proceso se explicará adecuadamente para que todos puedan seguir el desarrollo del servicio.

Desarrollo de un sistema de repetición (Parte 62): Presionando play en el servicio (III)
En este artículo comenzaremos a abordar el problema del exceso de ticks, que puede afectar a la aplicación cuando usamos datos reales. Este exceso complica muchas veces la correcta temporización necesaria para construir la barra de un minuto dentro de la ventana adecuada.

Desarrollo de un sistema de repetición (Parte 54): El nacimiento del primer módulo
En este artículo, veremos cómo construir el primero de los módulos, realmente funcional, para ser utilizado en el sistema de repetición/simulador. Además de tener como propósito general servir para otras cosas también. El módulo que se construirá aquí será el del indicador de mouse.

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS) Modificación
En la segunda parte del artículo, seguiremos desarrollando una versión modificada del algoritmo AOS (Atomic Orbital Search), centrándonos en operadores específicos para mejorar su eficacia y adaptabilidad. Tras analizar los fundamentos y la mecánica del algoritmo, discutiremos ideas para mejorar el rendimiento y la capacidad de analizar espacios de soluciones complejos, proponiendo nuevos enfoques para ampliar su funcionalidad como herramienta de optimización.

Desarrollo de un sistema de repetición (Parte 68): Ajuste del tiempo (I)
A continuación, continuaremos con el trabajo de lograr que el indicador del mouse nos informe sobre el tiempo restante de la barra en momentos de baja liquidez. Aunque a primera vista parece sencillo, verás que esta tarea es mucho más complicada. Esto se debe a algunos obstáculos que tendremos que superar. Por eso, es importante que sigas esta primera parte para poder comprender las siguientes.