
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 19): Ajustes necesarios
Lo que vamos a hacer aquí es preparar el terreno para que, cuando sea necesario agregar nuevas funciones al código, esto se haga de manera fluida y sencilla. El código actual aún no puede cubrir o manejar algunas cosas que serán necesarias para un progreso significativo. Necesitamos que todo se construya de manera que el esfuerzo de implementar algunas cosas sea lo más mínimo posible. Si esto se hace adecuadamente, tendremos la posibilidad de tener un sistema realmente muy versátil. Capaz de adaptarse muy fácilmente a cualquier situación que deba ser cubierta.

Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización
Para obtener un buen EA, tenemos que seleccionar muchos conjuntos adecuados de parámetros de instancias de estrategias comerciales para él. Esto puede hacerse manualmente ejecutando la optimización en diferentes símbolos y seleccionando después los mejores resultados. Pero resulta mejor delegar el trabajo en un programa y dedicarse a actividades más productivas.

Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)
En este artículo concluiremos la primera fase de la construcción. Aunque será algo relativamente rápido, explicaré detalles que quizás no se comentaron anteriormente. Pero aquí explicaré algunas cosas que mucha gente no entiende por qué son como son. Uno de estos casos es el del ratón. ¡¡¡¿Sabes por qué tienes que pulsar la tecla Shift o Ctrl en tu teclado?!!!

Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller
Este artículo presenta una fascinante inmersión en el mundo del comportamiento social de los organismos vivos y su influencia en la creación de un nuevo modelo matemático, el ASBO (Adaptive Social Behavior Optimisation). Hoy exploraremos cómo los principios de liderazgo, vecindad y cooperación observados en las sociedades de seres vivos inspiran el desarrollo de algoritmos de optimización innovadores.

Desarrollo de un sistema de repetición (Parte 31): Proyecto Expert Advisor — Clase C_Mouse (V)
Desarrollar una manera de poner un cronómetro, de modo que durante una repetición/simulación, éste pueda decirnos cuánto tiempo falta, puede parecer a primera vista una tarea simple y de rápida solución. Muchos simplemente intentarían adaptar y usar el mismo sistema que se utiliza cuando tenemos el servidor comercial a nuestro lado. Pero aquí reside un punto que muchos quizás no consideran al pensar en tal solución. Cuando estás haciendo una repetición, y esto para no hablar del hecho de la simulación, el reloj no funciona de la misma manera. Este tipo de cosa hace complejo construir tal sistema.

Características del Wizard MQL5 que debe conocer (Parte 6): Transformada de Fourier
La transformada de Fourier, introducida por Joseph Fourier, es un medio para descomponer puntos de datos de ondas complejos en componentes de ondas simples. Esta característica puede resultar útil para los tráders, así que hablaremos de ella en este artículo.

Algoritmos de optimización de la población: Búsqueda por difusión estocástica (Stochastic Diffusion Search, SDS)
En este artículo veremos la búsqueda por difusión estocástica, o SDS, que es un algoritmo de optimización muy potente y eficiente basado en los principios del paseo aleatorio. El algoritmo puede encontrar soluciones óptimas en espacios multidimensionales complejos, con una alta tasa de convergencia y la capacidad de evitar extremos locales.

Pruebas de permutación de Monte Carlo en MetaTrader 5
En este artículo echaremos un vistazo a cómo podemos realizar pruebas de permutación sobre la base de datos de ticks barajados en cualquier asesor experto utilizando solo MetaTrader 5.

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte II): Creación de un EA de cuadrícula simple
En este artículo, exploramos la estrategia de cuadrícula (grid) clásica, detallando su automatización mediante un Asesor Experto (EA) en MQL5 y analizando los resultados iniciales del backtest. Destacamos la necesidad de que la estrategia tenga una gran capacidad de retención y esbozamos planes para optimizar parámetros clave como la distancia, el takeProfit y el tamaño de los lotes en futuras entregas. La serie pretende mejorar la eficacia de las estrategias de negociación y su adaptabilidad a las distintas condiciones del mercado.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 18): Ticks y más ticks (II)
En este caso, es extremadamente claro que las métricas están muy lejos del tiempo ideal para la creación de barras de 1 minuto. Entonces, lo primero que realmente corregiremos es precisamente esto. Corregir la cuestión de la temporización no es algo complicado. Por más increíble que parezca, en realidad es bastante simple de hacer. Sin embargo, no realicé la corrección en el artículo anterior porque allí el objetivo era explicar cómo llevar los datos de los ticks que se estaban utilizando para generar las barras de 1 minuto en el gráfico a la ventana de observación del mercado.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 24): FOREX (V)
Hoy eliminaremos la restricción que impedía la ejecución de simulaciones basadas en el trazado de LAST e introduciremos un nuevo punto de entrada específico para este tipo de simulación. Ahora, vean que todo el mecanismo operativo se fundamentará en los principios del mercado de divisas. La principal distinción en esta rutina reside en la separación entre las simulaciones BID y LAST. Pero, es importante notar que la metodología empleada en la aleatorización del tiempo y su ajuste para la compatibilidad con la clase C_Replay permanece idéntica en ambos tipos de simulación. Esto es bueno, pues las alteraciones en uno de los modos resultan en mejoras automáticas en el otro, especialmente en lo que concierne al manejo del tiempo entre los ticks.

Desarrollo de un sistema de repetición (Parte 38): Pavimentando el terreno (II)
Muchas personas que se hacen llamar programadores de MQL5 no tienen los conocimientos básicos que presentaré en este artículo. Muchos consideran que MQL5 es limitado; sin embargo, todo se debe a la falta de conocimientos. Así que no te avergüences de no saber. Avergüénzate, en cambio, de no preguntar. El simple hecho de obligar a MetaTrader 5 a no permitir que un indicador se duplique, en ningún caso nos da los medios para realizar una comunicación bidireccional entre el indicador y el Expert Advisor. Todavía estamos muy lejos de esto. No obstante, el hecho de que el indicador no se duplique en el gráfico nos da cierta tranquilidad.

Teoría de categorías en MQL5 (Parte 14): Funtores con orden lineal
Este artículo de la serie sobre la implementación de la teoría de categorías en MQL5 está dedicado a los funtores. Hoy veremos cómo asignar el orden lineal a un conjunto utilizando funtores al analizar dos conjuntos de datos que parecen no tener relación entre sí.

Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias
Tras optimizar una estrategia comercial, obtendremos conjuntos de parámetros en base a los cuales podremos crear varias instancias (ejemplares) de estrategias comerciales combinadas en un asesor experto. Antes lo hacíamos manualmente, pero ahora trataremos de automatizar el proceso

El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5
Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.

Teoría de Categorías en MQL5 (Parte 5): Ecualizadores
La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)
Este artículo analiza el algoritmo AOS (Atomic Orbital Search), que usa conceptos de modelos orbitales atómicos para modelar la búsqueda de soluciones. El algoritmo se basa en distribuciones de probabilidad y en la dinámica de las interacciones en el átomo. El artículo analiza con detalle los aspectos matemáticos del AOS, incluida la actualización de las posiciones de las soluciones candidatas y los mecanismos de absorción y liberación de energía. El AOS descubre nuevos horizontes para la aplicación de los principios cuánticos a los problemas computacionales al ofrecer un enfoque innovador de la optimización.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 17): Ticks y más ticks (I)
Aquí vamos a empezar a ver cómo implementar algo realmente interesante y curioso. Pero al mismo tiempo, es extremadamente complicado debido a algunas cuestiones que muchos confunden. Y lo peor que puede pasar es que algunos operadores que se autodenominan profesionales no tienen idea de la importancia de estos conceptos en el mercado de capitales. Sí, a pesar de que el enfoque aquí es la programación, comprender algunas cuestiones relacionadas con las operaciones en los mercados es de suma importancia para lo que vamos a empezar a implementar aquí.

Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)
El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.

Teoría de categorías en MQL5 (Parte 4): Intervalos, experimentos y composiciones
La teoría de categorías es una rama de las matemáticas diversa y en expansión, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo describir algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.

Simulador rápido de estrategias comerciales en Python usando Numba
Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)
Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.

Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos
Ya hemos puesto en marcha la primera fase del proceso de optimización automatizada. Para distintos símbolos y marcos temporales, realizamos la optimización utilizando varios criterios y almacenamos información sobre los resultados de cada pasada en la base de datos. Ahora vamos a seleccionar los mejores grupos de conjuntos de parámetros de entre los encontrados en la primera etapa.

Simulación de mercado (Parte 03): Una cuestión de rendimiento
Muchas veces, estamos obligados a dar un paso atrás para luego avanzar. En este artículo, mostraré todos los cambios necesarios para que el rendimiento de los indicadores Mouse y Chart Trade no se viera comprometido. Como bono, presentaré otros cambios que ocurrieron en otros archivos de encabezado, los cuales serán muy utilizados en el futuro.

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)
En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.

Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)
Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas
Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.

Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton
El polinomio de Newton, que crea ecuaciones cuadráticas a partir de un conjunto de unos pocos puntos, es un enfoque arcaico pero interesante para observar una serie temporal. En este artículo tratamos de explorar qué aspectos podrían ser de utilidad para los operadores desde este enfoque, así como abordar sus limitaciones.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)
Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.

Características del Wizard MQL5 que debe conocer (Parte 23): Redes neuronales convolucionales (CNNs, Convolutional Neural Networks)
Las redes neuronales convolucionales son otro algoritmo de aprendizaje automático que tiende a especializarse en descomponer conjuntos de datos multidimensionales en partes constituyentes clave. Examinamos cómo se consigue esto normalmente y exploramos una posible aplicación para los operadores en otra clase de señal del asistente MQL5.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)
En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.

Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)
En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.

Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)
Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.

Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5
Aprenda a crear y personalizar objetos gráficos en MQL5 utilizando datos actuales e históricos. Esta guía basada en proyectos le ayuda a visualizar operaciones y aplicar conceptos MQL5 de manera práctica, lo que facilita la creación de herramientas adaptadas a sus necesidades comerciales.

Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)
Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.

Teoría de categorías en MQL5 (Parte 15): Funtores con grafos
El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.

Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)
Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.

Métodos de optimización de la biblioteca ALGLIB (Parte I)
En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)
Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.

Desarrollamos un asesor experto multidivisa (Parte 18): Automatización de la selección de grupos considerando el periodo forward
Seguimos automatizando los pasos que antes realizábamos manualmente. Esta vez regresaremos a la automatización de la segunda etapa, es decir, a la selección del grupo óptimo de instancias únicas de estrategias comerciales, complementándola con la posibilidad de considerar los resultados de las instancias en el periodo anterior.