
Neuronale Netze leicht gemacht (Teil 27): Tiefes Q-Learning (DQN)
Wir studieren weiterhin das Verstärkungslernen, das Reinforcement Learning. In diesem Artikel werden wir uns mit der Methode des Deep Q-Learning vertraut machen. Mit dieser Methode hat das DeepMind-Team ein Modell geschaffen, das einen Menschen beim Spielen von Atari-Computerspielen übertreffen kann. Ich denke, es wird nützlich sein, die Möglichkeiten der Technologie zur Lösung von Handelsproblemen zu bewerten.

Datenkennzeichnung für Zeitreihenanalyse (Teil 2): Datensätze mit Trendmarkern mit Python erstellen
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!


Andere Klassen in der Bibliothek DoEasy (Teil 69): Kollektionsklasse der Chart-Objekte
Mit diesem Artikel beginne ich die Entwicklung der Kollektionsklasse der Chart-Objekt. Die Klasse wird die Kollektionsliste der Chart-Objekte mit ihren Unterfenstern und Indikatoren speichern und die Möglichkeit bieten, mit beliebigen ausgewählten Charts und ihren Unterfenstern oder mit einer Liste von mehreren Charts gleichzeitig zu arbeiten.

Lernen Sie, wie man ein Handelssystem mit dem Awesome Oscillator entwickelt
In diesem neuen Artikel unserer Serie werden wir ein neues technisches Instrument kennenlernen, das für unseren Handel nützlich sein kann: den Indikator Awesome Oscillator (AO). Wir werden lernen, wie man mit diesem Indikator ein Handelssystem entwickeln kann.

Modifizierter Grid-Hedge EA in MQL5 (Teil I): Erstellung eines einfachen Hedge EA
Wir werden einen einfachen Hedge EA als Basis für unseren fortgeschritteneren Grid-Hedge EA erstellen, der eine Mischung aus klassischen Grid- und klassischen Hedge-Strategien sein wird. Am Ende dieses Artikels werden Sie wissen, wie Sie eine einfache Hedge-Strategie erstellen können, und Sie werden auch erfahren, was die Leute darüber sagen, ob diese Strategie wirklich zu 100 % profitabel ist.


Anwendung von OLAP im Handel (Teil 4): Quantitative und visuelle Analyse der Testberichte
Der Artikel bietet grundlegende Werkzeuge für die OLAP-Analyse von Testberichten in Bezug auf einzelne Durchläufe und Optimierungsergebnisse. Das Werkzeug kann mit Dateien im Standardformat (tst und opt) arbeiten und bietet auch eine grafische Schnittstelle. MQL-Quellcodes sind unten angefügt.

Beherrschung der Marktdynamik: Erstellen eines Expert Advisors (EA) mit Unterstützungs- und Widerstandsstrategie
Ein umfassender Leitfaden zur Entwicklung eines automatisierten Handelsalgorithmus auf der Grundlage einer Unterstützungs- und Widerstandsstrategie. Detaillierte Informationen zu allen Aspekten der Erstellung eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.

Datenwissenschaft und maschinelles Lernen (Teil 02): Logistische Regression
Die Klassifizierung von Daten ist für einen Algo-Händler und einen Programmierer von entscheidender Bedeutung. In diesem Artikel werden wir uns auf einen logistischen Klassifizierungsalgorithmus konzentrieren, der uns wahrscheinlich helfen kann, die Ja- oder Nein-Stimmen, die Höhen und Tiefen, Käufe und Verkäufe zu identifizieren.

Neuronale Netze leicht gemacht (Teil 14): Datenclustering
Es ist mehr als ein Jahr her, dass ich meinen letzten Artikel veröffentlicht habe. Das ist eine ganze Menge Zeit, um Ideen zu überarbeiten und neue Ansätze zu entwickeln. In dem neuen Artikel möchte ich von der bisher verwendeten Methode des überwachten Lernens abweichen. Diesmal werden wir uns mit Algorithmen des unüberwachten Lernens beschäftigen. Wir werden insbesondere einen der Clustering-Algorithmen - K-Means - betrachten.

Verbessern Sie Ihre Handelscharts durch interaktiven GUI's in MQL5 (Teil II): Ein bewegliches GUI (II)
Erschließen Sie das Potenzial der dynamischen Datendarstellung in Ihren Handelsstrategien und Dienstprogrammen mit unserer ausführlichen Anleitung zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in die grundlegenden Prinzipien der objektorientierten Programmierung und entdecken Sie, wie Sie mit Leichtigkeit und Effizienz einzelne oder mehrere bewegliche GUIs auf demselben Diagramm entwerfen und implementieren können.

Wie man ein interaktives MQL5 Dashboard/Panel mit Hilfe der Controls-Klasse erstellt (Teil 2): Reaktionsfähigkeit von Schaltflächen hinzufügen
In diesem Artikel konzentrieren wir uns darauf, unser statisches MQL5-Dashboard-Panel in ein interaktives Tool zu verwandeln, indem wir die Reaktionsfähigkeit von Schaltflächen aktivieren. Wir untersuchen, wie die Funktionalität der GUI-Komponenten automatisiert werden kann, um sicherzustellen, dass sie angemessen auf Nutzerklicks reagieren. Am Ende des Artikels haben wir eine dynamische Schnittstelle eingerichtet, die das Engagement der Nutzer und die Handelserfahrung verbessert.

Datenwissenschaft und maschinelles Lernen (Teil 06): Gradientenverfahren
Der Gradientenverfahren spielt eine wichtige Rolle beim Training neuronaler Netze und vieler Algorithmen des maschinellen Lernens. Es handelt sich um einen schnellen und intelligenten Algorithmus, der trotz seiner beeindruckenden Arbeit von vielen Datenwissenschaftlern immer noch missverstanden wird - sehen wir uns an, worum es geht.

Neuronale Netze leicht gemacht (Teil 21): Variierter Autoencoder (VAE)
Im letzten Artikel haben wir uns mit dem Algorithmus des Autoencoders vertraut gemacht. Wie jeder andere Algorithmus hat auch dieser seine Vor- und Nachteile. In seiner ursprünglichen Implementierung wird der Autoencoder verwendet, um die Objekte so weit wie möglich von der Trainingsstichprobe zu trennen. Dieses Mal werden wir darüber sprechen, wie man mit einigen ihrer Nachteile umgehen kann.

Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)
Automatisierung bedeutet nichts, wenn Sie den Zeitplan nicht kontrollieren können. Kein Arbeitnehmer kann effizient sein, wenn er 24 Stunden am Tag arbeitet. Viele sind jedoch der Meinung, dass ein automatisiertes System 24 Stunden am Tag funktionieren sollte. Aber es ist immer gut, eine Möglichkeit zu haben, einen Arbeitsbereich für den EA festzulegen. In diesem Artikel geht es darum, wie man einen solchen Zeitbereich richtig festlegt.

Lernen Sie, wie man ein Handelssystem mit dem Accelerator Oscillator entwickelt
Ein neuer Artikel aus unserer Serie über die Erstellung einfacher Handelssysteme anhand der beliebtesten technischen Indikatoren. Wir werden einen neuen Indikator kennenlernen, den Accelerator Oscillator, und wir werden lernen, wie man ein Handelssystem mit ihm entwickelt.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 20): Neues Auftragssystem (III)
Wir arbeiten weiter an der Umsetzung des neuen Auftragssystems. Die Erstellung eines solchen Systems erfordert eine gute Beherrschung von MQL5 sowie ein Verständnis dafür, wie die MetaTrader 5-Plattform tatsächlich funktioniert und welche Ressourcen sie bietet.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 22): Neues Auftragssystems (V)
Heute werden wir die Entwicklung des neuen Auftragssystems fortsetzen. Es ist nicht einfach, ein neues System einzuführen, da wir häufig auf Probleme stoßen, die den Prozess erheblich erschweren. Wenn diese Probleme auftreten, müssen wir innehalten und die Richtung, in die wir uns bewegen, neu analysieren.

Einführung in MQL5 (Teil 8): Leitfaden für Einsteiger zur Erstellung von Expert Advisors (II)
Dieser Artikel behandelt häufige Anfängerfragen aus MQL5-Foren und zeigt praktische Lösungen auf. Lernen Sie, grundlegende Aufgaben wie Kaufen und Verkaufen, die Kursabfrage der Kerzen und die Verwaltung automatisierter Handelsaspekte wie Handelslimits, Handelszeiträume und Gewinn-/Verlustschwellen durchzuführen. Erhalten Sie eine schrittweise Anleitung, um Ihr Verständnis und Ihre Implementierung dieser Konzepte in MQL5 zu verbessern.

Integrieren Sie Ihr eigenes LLM in Ihren EA (Teil 1): Die bereitgestellte Hardware und Umgebung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Datenwissenschaft und maschinelles Lernen (Teil 04): Vorhersage des aktuellen Börsenkrachs
In diesem Artikel werde ich versuchen, unser logistisches Modell zu verwenden, um den Börsencrash auf der Grundlage der Fundamentaldaten der US-Wirtschaft vorherzusagen. NETFLIX und APPLE sind die Aktien, auf die wir uns konzentrieren werden, wobei wir die früheren Börsencrashs von 2019 und 2020 nutzen werden, um zu sehen, wie unser Modell in der aktuellen Krise abschneiden wird.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 21): Neues Auftragssystem (IV)
Schlussendlich wird das visuelle System in Betrieb genommen, obwohl es noch nicht vollständig ist. Hier finden die wichtigsten, gemachten Änderungen ein Ende. Es wird eine ganze Reihe weiterer geben, aber sie sind alle notwendig. Nun, die ganze Arbeit wird recht interessant sein.

Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung)
Im vorigen Artikel haben wir den Algorithmus Soft Actor-Critic (Akteur-Kritiker) implementiert, konnten aber kein profitables Modell trainieren. Hier werden wir das zuvor erstellte Modell optimieren, um die gewünschten Ergebnisse zu erzielen.

Wie Smart-Money-Konzepte (SMC) zusammen mit dem Fibonacci-Indikator einen optimalen Handelseinstieg signalisieren.
SMC (Orderblock) sind Schlüsselbereiche, in denen institutionelle Händler umfangreiche Käufe oder Verkäufe tätigen. Nach einer signifikanten Kursbewegung hilft Fibonacci dabei, ein potenzielles Retracement von einem kürzlichen Swing-Hoch zu einem Swing-Tief zu identifizieren, um einen optimalen Handelseinstieg zu finden.

Integrieren Sie Ihr eigenes LLM in EA (Teil 2): Beispiel für den Einsatz in einer Umgebung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Aufbau und Test des Handelssystems Aroon
In diesem Artikel erfahren wir, wie wir ein Aroon-Handelssystem aufbauen können, nachdem wir die Grundlagen der Indikatoren und die erforderlichen Schritte zum Aufbau eines Handelssystems auf der Grundlage des Aroon-Indikators gelernt haben. Nachdem wir dieses Handelssystem aufgebaut haben, werden wir es testen, um zu sehen, ob es profitabel sein kann oder noch optimiert werden muss.

Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion
Das Problem des Verstärkungslernens liegt in der Notwendigkeit, eine Belohnungsfunktion zu definieren. Sie kann komplex oder schwer zu formalisieren sein. Um dieses Problem zu lösen, werden aktivitäts- und umweltbasierte Ansätze zum Erlernen von Fähigkeiten ohne explizite Belohnungsfunktion erforscht.

Erstellen von Multi-Symbol- und Multi-Perioden-Indikatoren
In diesem Artikel werden wir uns mit den Grundsätzen der Erstellung von Multi-Symbol- und Multi-Perioden-Indikatoren befassen. Wir werden auch sehen, wie man auf die Daten solcher Indikatoren von Expert Advisors und anderen Indikatoren zugreifen kann. Wir werden die Hauptmerkmale der Verwendung von Multi-Indikatoren in Expert Advisors und Indikatoren besprechen und sehen, wie man sie durch nutzerdefinierte Indikatorpuffer darstellen kann.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 29): Die sprechende Plattform
In diesem Artikel erfahren Sie, wie Sie die MetaTrader 5-Plattform zum Sprechen bringen. Wie wäre es, wenn wir den EA unterhaltsamer gestalten? Der Handel an den Finanzmärkten ist oft zu langweilig und eintönig, aber wir können diesen Job weniger anstrengend machen. Bitte beachten Sie, dass dieses Projekt für Menschen mit Suchtneigung gefährlich sein kann. Aber im Allgemeinen macht es die Dinge einfach weniger langweilig.

Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz
Dieser Artikel berichtet über die ersten Versuche bei der Entwicklung eines nativen MQTT-Clients für MQL5. MQTT ist ein Client-Server-Publish/Subscribe-Messaging-Transportprotokoll. Es ist leichtgewichtig, offen, einfach und so konzipiert, dass sie leicht zu implementieren ist. Diese Eigenschaften machen es ideal für den Einsatz in vielen Situationen.

Neuronale Netze leicht gemacht (Teil 51): Behavior-Guided Actor-Critic (BAC)
Die letzten beiden Artikel befassten sich mit dem Soft Actor-Critic-Algorithmus, der eine Entropie-Regularisierung in die Belohnungsfunktion integriert. Dieser Ansatz schafft ein Gleichgewicht zwischen Umwelterkundung und Modellnutzung, ist aber nur auf stochastische Modelle anwendbar. In diesem Artikel wird ein alternativer Ansatz vorgeschlagen, der sowohl auf stochastische als auch auf deterministische Modelle anwendbar ist.

Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!


Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks
Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren Tick angekommen sind.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 26): Der Zukunft entgegen (I)
Heute werden wir unser Auftragssystem auf die nächste Stufe bringen. Aber vorher müssen wir noch einige Probleme lösen. Jetzt haben wir einige Fragen, die sich darauf beziehen, wie wir arbeiten wollen und welche Dinge wir während des Handelstages tun.

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 19): Neues Auftragssystem (II)
In diesem Artikel werden wir ein grafisches Ordnungssystem vom Typ „Schau, was passiert“ entwickeln. Bitte beachten Sie, dass wir dieses Mal nicht bei Null anfangen, sondern das bestehende System modifizieren, indem wir weitere Objekte und Ereignisse in den Chart des von uns gehandelten Vermögenswerts einfügen.

Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage
In Fortführung des Themas des vorangegangenen Artikels habe ich mich entschlossen, eine flexiblere und funktionellere Vorlage zu erstellen, die über größere Möglichkeiten verfügt und sowohl in der Freiberuflichkeit als auch als Basis für die Entwicklung von Mehrwährungs- und Mehrperioden-EAs mit der Fähigkeit zur Integration mit externen Lösungen effektiv genutzt werden kann.

Neuronale Netze leicht gemacht (Teil 30): Genetische Algorithmen
Heute möchte ich Ihnen eine etwas andere Lernmethode vorstellen. Wir können sagen, dass sie von Darwins Evolutionstheorie entlehnt ist. Sie ist wahrscheinlich weniger kontrollierbar als die zuvor besprochenen Methoden, aber sie ermöglicht die Ausbildung nicht-differenzierbarer Modelle.

Verständnis von Programmierparadigmen (Teil 1): Ein verfahrenstechnischer Ansatz für die Entwicklung eines Price Action Expert Advisors
Lernen Sie die Programmierparadigmen und ihre Anwendung in MQL5-Code kennen. In diesem Artikel werden die Besonderheiten der prozeduralen Programmierung untersucht und anhand eines praktischen Beispiels in die Praxis umgesetzt. Sie lernen, wie Sie einen Price Action Expert Advisor mit dem EMA-Indikator und Kerzen-Kursdaten entwickeln. Außerdem führt der Artikel in das Paradigma der funktionalen Programmierung ein.

Die Handelsstrategie Inverse Fair Value Gap
Eine Inverse Fair Value Gap (IFVG) liegt vor, wenn der Kurs in eine zuvor ermittelte „Fair Value Gap“ abprallt und statt der erwarteten unterstützenden oder Widerstandsreaktion diese nicht einhält. Dieses Scheitern kann eine potenzielle Veränderung der Marktrichtung signalisieren und einen konträren Handelsvorteil bieten. In diesem Artikel werde ich meinen selbst entwickelten Ansatz zur Quantifizierung und Nutzung der inversen Fair Value Gap als Strategie für MetaTrader 5 Expert Advisors vorstellen.

Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA
In diesem Artikel wird die klassische Rasterstrategie untersucht, ihre Automatisierung mit einem Expert Advisor in MQL5 detailliert beschrieben und die ersten Backtest-Ergebnisse analysiert. Wir haben die Notwendigkeit einer hohen Haltekapazität für die Strategie hervorgehoben und Pläne für die Optimierung von Schlüsselparametern wie Abstand, TakeProfit und Losgrößen in zukünftigen Ausgaben skizziert. Die Reihe zielt darauf ab, die Effizienz der Handelsstrategien und die Anpassungsfähigkeit an unterschiedliche Marktbedingungen zu verbessern.

Verwendung des JSON Data APIs in Ihren MQL-Projekten
Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.