Artikel über das Programmieren in MQL4 und MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen
Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen

Preise und Signale in der DoEasy-Bibliothek (Teil 65): Kollektion der Markttiefe und die Klasse für die Arbeit mit MQL5.com- Signalen

In diesem Artikel werde ich die Kollektionsklasse für die Markttiefe aller Symbole erstellen und mit der Entwicklung der Funktionalität für die Arbeit mit dem MQL5.com Signals-Dienst beginnen, indem ich die Signal-Objektklasse erstelle.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 18): Neues Auftragssystems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 18): Neues Auftragssystems (I)

Dies ist der erste Teil des neuen Auftragssystems. Seit wir begonnen haben, diesen EA in unseren Artikeln zu dokumentieren, hat er verschiedene Änderungen und Verbesserungen erfahren, wobei das gleiche Modell des Auftragssystems auf dem Chart beibehalten wurde.
Techniche Analyse: Mach das Unmögliche Möglich!
Techniche Analyse: Mach das Unmögliche Möglich!

Techniche Analyse: Mach das Unmögliche Möglich!

Der Artikel beantwortet die Frage: Warum kann das Unmögliche möglich werden, wo vieles anders suggeriert wird? Technische Analyse Argumentation.
preview
Visuelle Auswertung der Optimierungsergebnisse

Visuelle Auswertung der Optimierungsergebnisse

In diesem Artikel geht es um die Erstellung von Diagrammen aller Optimierungsdurchläufe und um die Auswahl des optimalen nutzerdefinierten Kriteriums. Wir werden auch sehen, wie man eine gewünschte Lösung mit wenig MQL5-Kenntnissen erstellen kann, indem man die auf der Website veröffentlichten Artikel und Forumskommentare verwendet.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 10): Zugriff auf nutzerdefinierte Indikatoren

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 10): Zugriff auf nutzerdefinierte Indikatoren

Wie kann man auf nutzerdefinierte Indikatoren direkt in einem Expert Advisor zugreifen? Ein Handels-EA kann nur dann wirklich nützlich sein, wenn er nutzerdefinierte Indikatoren verwenden kann; andernfalls ist er nur ein Satz von Codes und Anweisungen.
preview
Einführung in MQL5 (Teil 2): Navigieren zwischen vordefinierten Variablen, gebräuchlichen Funktionen und Kontrollflussanweisungen

Einführung in MQL5 (Teil 2): Navigieren zwischen vordefinierten Variablen, gebräuchlichen Funktionen und Kontrollflussanweisungen

Begeben wir uns mit Teil zwei unserer MQL5-Serie auf eine aufschlussreiche Reise. Diese Artikel sind nicht einfach nur Anleitungen, sie sind die Tore zu einem verzauberten Reich, in dem Programmieranfänger und Zauberer gleichermaßen zu Hause sind. Was macht diese Reise wirklich magisch? Teil zwei unserer MQL5-Serie zeichnet sich durch seine erfrischende Einfachheit aus, die komplexe Konzepte für alle zugänglich macht. Beantworten Sie Ihre Fragen interaktiv und sorgen Sie so für eine bereichernde und individuelle Lernerfahrung. Lassen Sie uns eine Gemeinschaft aufbauen, in der das Verständnis von MQL5 für jeden ein Abenteuer ist. Willkommen in der Welt der Verzauberung!
MetaTrader AppStore - Ergebnisse für  Q3/2013
MetaTrader AppStore - Ergebnisse für  Q3/2013

MetaTrader AppStore - Ergebnisse für Q3/2013

Ein weiteres Quartal des Jahres ist vorbei. Eine gute Gelegenheit für uns, die Ergebnisse des MetaTrader AppStore zusammenzufassen - der größte Platz für Handelsroboter und technische Indikatoren für MetaTrader Plattformen. Zum Ende des abgelaufenen Quartals haben mehr als 500 Entwickler über 1200 Produkte in Market platziert.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 09): Automatisierung (I)

Erstellen eines EA, der automatisch funktioniert (Teil 09): Automatisierung (I)

Obwohl die Erstellung eines automatisierten EA keine sehr schwierige Aufgabe ist, können ohne die notwendigen Kenntnisse viele Fehler gemacht werden. In diesem Artikel werden wir uns ansehen, wie man die erste Stufe der Automatisierung aufbaut, die darin besteht, einen Auslöser zu erstellen, um den Breakeven und einen Trailing-Stop zu aktivieren.
preview
Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier

Neuronale Netze leicht gemacht (Teil 35): Modul für intrinsische Neugier

Wir untersuchen weiterhin Algorithmen für das verstärkte Lernen. Alle bisher betrachteten Algorithmen erfordern die Erstellung einer Belohnungspolitik, die es dem Agenten ermöglicht, jede seiner Aktionen bei jedem Übergang von einem Systemzustand in einen anderen zu bewerten. Dieser Ansatz ist jedoch ziemlich künstlich. In der Praxis gibt es eine gewisse Zeitspanne zwischen einer Handlung und einer Belohnung. In diesem Artikel werden wir einen Algorithmus zum Trainieren eines Modells kennenlernen, der mit verschiedenen Zeitverzögerungen zwischen Aktion und Belohnung arbeiten kann.
preview
Erstellen eines EA, der automatisch funktioniert (Teil 07): Kontoarten (II)

Erstellen eines EA, der automatisch funktioniert (Teil 07): Kontoarten (II)

Heute werden wir sehen, wie man einen Expert Advisor erstellt, der einfach und sicher im automatischen Modus arbeitet. Der Händler sollte sich immer darüber im Klaren sein, was der automatische EA tut, sodass er ihn im Falle einer „Entgleisung“ so schnell wie möglich aus dem Chart entfernen und die Kontrolle über die Situation übernehmen kann.
preview
Wie man ein erfolgreicher Signalanbieter auf MQL5.com wird

Wie man ein erfolgreicher Signalanbieter auf MQL5.com wird

Mein Hauptziel in diesem Artikel ist es, Ihnen eine einfache und genaue Beschreibung der Schritte zu geben, die Ihnen helfen werden, ein Top-Signalanbieter auf MQL5.com zu werden. Auf der Grundlage meines Wissens und meiner Erfahrung werde ich erklären, was nötig ist, um ein erfolgreicher Signalanbieter zu werden, und wie man eine gute Strategie findet, testet und optimiert. Darüber hinaus gebe ich Tipps zur Veröffentlichung Ihres Signals, zum Verfassen einer überzeugenden Beschreibung und zur effektiven Werbung und Verwaltung des Signals.
preview
Zyklusanalyse mit dem Goertzel-Algorithmus

Zyklusanalyse mit dem Goertzel-Algorithmus

In diesem Artikel stellen wir Code-Utilities vor, die den Goertzel-Algorithmus in Mql5 implementieren, und untersuchen zwei Möglichkeiten, wie die Technik bei der Analyse von Kursen für die Entwicklung möglicher Strategien eingesetzt werden kann.
Grafiken in der Bibliothek DoEasy (Teil 83): Die Klasse des abstrakten grafischen Standardobjekts
Grafiken in der Bibliothek DoEasy (Teil 83): Die Klasse des abstrakten grafischen Standardobjekts

Grafiken in der Bibliothek DoEasy (Teil 83): Die Klasse des abstrakten grafischen Standardobjekts

In diesem Artikel werde ich die Klasse des abstrakten grafischen Objekts erstellen. Dieses Objekt soll als Grundlage für die Erstellung der Klasse der grafischen Standardobjekte dienen. Grafische Objekte haben mehrere Eigenschaften. Daher muss ich vor der eigentlichen Erstellung der Klasse des abstrakten grafischen Objekts eine Menge Vorarbeit leisten. Dazu gehört das Festlegen der Eigenschaften in den Enumerationen der Bibliothek.
preview
Algorithmen zur Optimierung mit Populationen Grauer-Wolf-Optimierung (GWO)

Algorithmen zur Optimierung mit Populationen Grauer-Wolf-Optimierung (GWO)

Betrachten wir einen der neuesten modernen Optimierungsalgorithmen - die Grey-Wolf-Optimierung. Das originelle Verhalten bei Testfunktionen macht diesen Algorithmus zu einem der interessantesten unter den zuvor besprochenen Algorithmen. Dies ist einer der besten Algorithmen für das Training neuronaler Netze, glatte Funktionen mit vielen Variablen.
preview
Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Wir setzen unsere Diskussion über Algorithmen des Verstärkungslernens zur Lösung von Problemen im kontinuierlichen Aktionsraum fort. In diesem Artikel werde ich den Soft Actor-Critic (SAC) Algorithmus vorstellen. Der Hauptvorteil von SAC ist die Fähigkeit, optimale Strategien zu finden, die nicht nur die erwartete Belohnung maximieren, sondern auch eine maximale Entropie (Vielfalt) von Aktionen aufweisen.
preview
Wie man einen nutzerdefinierten True Strength Index-Indikator mit MQL5 erstellt

Wie man einen nutzerdefinierten True Strength Index-Indikator mit MQL5 erstellt

Hier ist ein neuer Artikel darüber, wie man einen nutzerdefinierten Indikator erstellt. Dieses Mal werden wir mit dem True Strength Index (TSI) arbeiten und einen darauf basierenden Expert Advisor erstellen.
preview
Algorithmischer Handel mit MetaTrader 5 und R für Einsteiger

Algorithmischer Handel mit MetaTrader 5 und R für Einsteiger

Begeben wir uns auf eine fesselnde Entdeckungsreise, bei der Finanzanalyse und algorithmischer Handel aufeinandertreffen, während wir die Kunst der nahtlosen Verbindung von R und MetaTrader 5 enträtseln. Dieser Artikel ist Ihr Leitfaden für den Brückenschlag zwischen den analytischen Finessen von R und den beeindruckenden Handelsmöglichkeiten von MetaTrader 5.
preview
Algorithmen zur Populationsoptimierung Partikelschwarm (PSO)

Algorithmen zur Populationsoptimierung Partikelschwarm (PSO)

In diesem Artikel werde ich den beliebten Algorithmus der Partikelschwarm-Optimierung (PSO) besprechen. Zuvor haben wir wichtige Eigenschaften von Optimierungsalgorithmen wie Konvergenz, Konvergenzrate, Stabilität und Skalierbarkeit erörtert, einen Prüfstand entwickelt und den einfachsten RNG-Algorithmus betrachtet.
preview
Bewertung von ONNX-Modellen anhand von Regressionsmetriken

Bewertung von ONNX-Modellen anhand von Regressionsmetriken

Bei der Regression geht es um die Prognose eines realen Wertes anhand eines unbekannten Beispiels. Die so genannten Regressionsmetriken werden verwendet, um die Genauigkeit der Vorhersagen des Regressionsmodells zu bewerten.
Gruppierte Dateioperationen
Gruppierte Dateioperationen

Gruppierte Dateioperationen

Manchmal ist es erforderlich, identische Operationen mit einer Gruppe an Dateien durchzuführen. Wenn Sie eine Liste mit in einer Gruppe enthaltenen Dateien haben, dann ist es kein Problem. Wenn Sie die Liste jedoch selber erstellen müssen, kommt eine Frage auf: "Wie kann ich das machen?" Der Artikel schlägt vor, dies mit den in der kernel.23.dll enthaltenen Funktionen FindFirstFile() und FindNextFile() zu machen.
Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale
Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

Andere Klassen in der Bibliothek DoEasy (Teil 66): MQL5.com die Kollektionsklasse der Signale

In diesem Artikel werde ich die Kollektionsklasse der Signale des MQL5.com Signals-Dienstes mit den Funktionen zur Verwaltung von Signalen erstellen. Außerdem werde ich die Schnappschuss-Objektklasse der Markttiefe (Depth of Market, DOM) verbessern, um das gesamte Kauf- und Verkaufsvolumen im DOM anzuzeigen.
preview
Einführung in MQL5 (Teil 7): Anleitung für Anfänger zur Erstellung von Expert Advisors und zur Verwendung von AI-generiertem Code in MQL5

Einführung in MQL5 (Teil 7): Anleitung für Anfänger zur Erstellung von Expert Advisors und zur Verwendung von AI-generiertem Code in MQL5

Entdecken Sie die ultimative Anleitung für Anfänger zum Erstellen von Expert Advisors (EAs) mit MQL5 in unserem umfassenden Artikel. Lernen Sie Schritt für Schritt, wie Sie EAs mithilfe von Pseudocode konstruieren und die Leistung von KI-generiertem Code nutzen können. Egal, ob Sie neu im algorithmischen Handel sind oder Ihre Fähigkeiten verbessern wollen, dieser Leitfaden bietet einen klaren Weg zur Erstellung effektiver EAs.
preview
Deep Learning, Vorhersage und Aufträge mit Python, dem MetaTrader5 Python-Paket und ONNX-Modelldatei

Deep Learning, Vorhersage und Aufträge mit Python, dem MetaTrader5 Python-Paket und ONNX-Modelldatei

Im Rahmen des Projekts wird Python für Deep Learning-basierte Prognosen auf den Finanzmärkten eingesetzt. Wir werden die Feinheiten des Testens der Leistung des Modells anhand von Schlüsselkennzahlen wie dem mittleren absoluten Fehler (MAE), dem mittleren quadratischen Fehler (MSE) und dem R-Quadrat (R2) erkunden und lernen, wie man alles in eine ausführbare Datei verpackt. Wir werden auch eine ONNX-Modelldatei mit seinem EA erstellen.
Muster, die beim Handeln mit Währungskörben verfügbar sind. Teil III
Muster, die beim Handeln mit Währungskörben verfügbar sind. Teil III

Muster, die beim Handeln mit Währungskörben verfügbar sind. Teil III

Das ist der abschließende Artikel zum Thema "Muster, die beim Handeln mit Körben von Währungspaaren auftreten". Der Artikel beschäftigt sich mit vereinigten Trendindikatoren und der Anwendung gewöhnlicher grafischer Konstruktionen.
preview
Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Was ist Frames Analyzer? Dies ist ein Plug-in-Modul für jeden Expert Advisor zur Analyse von Optimierungsframes während der Parameteroptimierung im Strategietester, aber auch außerhalb des Testers, durch Lesen einer MQD-Datei oder einer Datenbank, die unmittelbar nach der Parameteroptimierung erstellt wird. Sie können diese Optimierungsergebnisse mit anderen Nutzern teilen, die über das Tool Frames Analyzer verfügen, um die Ergebnisse gemeinsam zu diskutieren.
preview
Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

In diesem Artikel werde ich einen völlig anderen Ansatz für den algorithmischen Handel vorstellen, den ich nach langer Zeit gefunden habe. Das alles hat natürlich mit meinem Brute-Force-Programm zu tun, das eine Reihe von Änderungen erfahren hat, die es ihm ermöglichen, mehrere Probleme gleichzeitig zu lösen. Dennoch ist der Artikel allgemeiner und so einfach wie möglich gehalten, weshalb er auch für diejenigen geeignet ist, die nichts über Brute-Force wissen.
Nativer Twitter-Client: Teil 2
Nativer Twitter-Client: Teil 2

Nativer Twitter-Client: Teil 2

Ein als MQL-Klasse implementierter Twitter-Client, mit dem Sie Tweets mit Fotos versenden können. Alles, was Sie brauchen, ist eine einzige, in sich geschlossene Include-Datei und schon können Sie all Ihre wunderbaren Charts und Signale twittern.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 24): Herstellen eines robusten Systems (I)

In diesem Artikel werden wir das System zuverlässiger machen, um eine robuste und sichere Nutzung zu gewährleisten. Eine der Möglichkeiten, die gewünschte Robustheit zu erreichen, besteht darin, den Code so oft wie möglich wiederzuverwenden, damit er ständig in verschiedenen Fällen getestet wird. Aber das ist nur eine der Möglichkeiten. Eine andere Möglichkeit ist die Verwendung von OOP.
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe

In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst wird im nächsten Artikel implementiert).
preview
Neuronale Netze leicht gemacht (Teil 16): Praktische Anwendung des Clustering

Neuronale Netze leicht gemacht (Teil 16): Praktische Anwendung des Clustering

Im vorigen Artikel haben wir eine Klasse für das Clustering von Daten erstellt. In diesem Artikel möchte ich Varianten für die mögliche Anwendung der gewonnenen Ergebnisse bei der Lösung praktischer Handelsaufgaben vorstellen.
preview
Klassifizierungsmodelle in der Bibliothek Scikit-Learn und ihr Export nach ONNX

Klassifizierungsmodelle in der Bibliothek Scikit-Learn und ihr Export nach ONNX

In diesem Artikel werden wir die Anwendung aller in der Bibliothek Scikit-Learn verfügbaren Klassifizierungsmodelle untersuchen, um die Klassifizierungsaufgabe im Iris-Datensatz von Fisher, zu lösen. Wir werden versuchen, diese Modelle in das ONNX-Format zu konvertieren und die resultierenden Modelle in MQL5-Programmen zu verwenden. Außerdem werden wir die Genauigkeit der Originalmodelle mit ihren ONNX-Versionen auf dem vollständigen Iris-Datensatz vergleichen.
Andere Klassen in der Bibliothek DoEasy (Teil 72): Kontrolle und Aufzeichnung der Parameter von Chart-Objekten in der Kollektion
Andere Klassen in der Bibliothek DoEasy (Teil 72): Kontrolle und Aufzeichnung der Parameter von Chart-Objekten in der Kollektion

Andere Klassen in der Bibliothek DoEasy (Teil 72): Kontrolle und Aufzeichnung der Parameter von Chart-Objekten in der Kollektion

In diesem Artikel werde ich die Arbeit mit den Klassen eines Chartobjekts und ihrer Kollektion vervollständigen. Ich werde auch die automatische Kontrolle von Änderungen Eigenschaften von Chartobjekten und ihren Fenstern implementieren, sowie das Speichern neuer Parameter in den Objekteigenschaften. Eine solche Überarbeitung ermöglicht die zukünftige Implementierung einer Ereignisfunktionalität für die gesamte Kollektion des Charts.
Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt
Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt

Lernen Sie, wie man ein Handelssystem mit dem CCI entwickelt

In diesem neuen Artikel aus unserer Serie zum Erlernen der Entwicklung von Handelssystemen stelle ich Ihnen den Commodities Channel Index (CCI) vor, erkläre seine Besonderheiten und zeige Ihnen, wie Sie ein Handelssystem auf Basis dieses Indikators erstellen können.
Andere Klassen in der Bibliothek DoEasy (Teil 67): Objektklasse der Charts
Andere Klassen in der Bibliothek DoEasy (Teil 67): Objektklasse der Charts

Andere Klassen in der Bibliothek DoEasy (Teil 67): Objektklasse der Charts

In diesem Artikel werde ich die Objektklasse der Charts (das einzelne Chart eines Handelsinstruments) erstellen und die Kollektionsklasse von MQL5-Signalobjekten so verbessern, dass jedes in der Kollektion gespeicherte Signalobjekt alle seine Parameter beim Aktualisieren der Liste aktualisiert.
preview
Einige Lektionen der Prop-Firmen (Teil 1) — Eine Einführung

Einige Lektionen der Prop-Firmen (Teil 1) — Eine Einführung

In diesem einführenden Artikel spreche ich einige der Lehren an, die man aus den Risikoregeln ziehen kann, die Unternehmen für den Eigenhandel, engl. proprietary trading firms oder Prop-Firms, anwenden. Dies ist besonders wichtig für Anfänger und diejenigen, die Schwierigkeiten haben, in dieser Welt des Handels Fuß zu fassen. Der folgende Artikel wird sich mit der Implementierung des Codes befassen.
Die Verwendung der Behauptung (assertions) bei der Entwicklung der Programme in MQL5
Die Verwendung der Behauptung (assertions) bei der Entwicklung der Programme in MQL5

Die Verwendung der Behauptung (assertions) bei der Entwicklung der Programme in MQL5

In diesem Artikel wird Behauptung (assertions) im Rahmen der Sprache MQL5 betrachtet. Es werden zwei Beispiele für die Realisierung des Behauptungsmechanismus geben, sowie allgemeine Empfehlungen für die Verwendung der Behauptungen.
Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen
Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

Preise in der DoEasy-Bibliothek (Teil 64): Markttiefe, Klassenobjekte für Schnappschüsse der Markttiefe und der Schnappschuss-Reihen

In diesem Artikel werde ich zwei Klassen erstellen (die Klassenobjekte des DOM-Schnappschusses und die der DOM-Schnappschuss-Reihe) und die Erstellung der DOM-Datenreihe testen.
MQL5 Market - Ergebnisse für Q2/2013
MQL5 Market - Ergebnisse für Q2/2013

MQL5 Market - Ergebnisse für Q2/2013

MQL5 Market, bereits seit 18 Monaten erfolgreich, ist zum größten Platz für Handelsstrategien und technische Indikatoren für Händler geworden. Dort findet man ca. 800 Handels-Anwendungen von 350 Entwicklern aus der ganzen Welt. Viele Händler haben bereits mehr als 100.000 Handelsprogramme gekauft und auf ihre MetaTrader 5 Terminals heruntergeladen.
preview
Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze

Datenwissenschaft und ML (Teil 26): Der ultimative Kampf der Zeitreihenprognosen — LSTM vs. GRU Neuronale Netze

Im vorigen Artikel haben wir ein einfaches RNN besprochen, das trotz seiner Unfähigkeit, langfristige Abhängigkeiten in den Daten zu verstehen, in der Lage war, eine profitable Strategie zu entwickeln. In diesem Artikel werden sowohl das Long-Short Term Memory (LSTM) als auch die Gated Recurrent Unit (GRU) behandelt. Diese beiden wurden eingeführt, um die Unzulänglichkeiten eines einfachen RNN zu überwinden und es zu überlisten.
Überlagerung und Interferenz bei Finanztiteln
Überlagerung und Interferenz bei Finanztiteln

Überlagerung und Interferenz bei Finanztiteln

Je mehr Faktoren das Verhalten eines Währungspaares beeinflussen, desto schwieriger ist es, dessen Verhalten zu bewerten und zukünftige Prognosen zu bilden. Wenn wir also die Komponenten eines Währungspaares, die Werte einer nationalen Währung, die sich mit der Zeit ändern, extrahieren könnten, könnten wir den möglichen Bewegungsraum einer nationalen Währung verglichen mit dem Währungspaar mit dieser Währung, sowie die Anzahl der Faktoren, die ihr Verhalten beeinflussen, stark eingrenzen. Als Ergebnis würden wir die Genauigkeit hinsichtlich des erwarteten Verhaltens sowie zukünftiger Prognosen erhöhen können. Wie können wir das machen?