Mehrere Indikatoren in einem Chart (Teil 03): Entwicklung von Definitionen für die Nutzer
Heute werden wir zum ersten Mal die Funktionsweise des Indikatorensystems aktualisieren. Im vorangegangenen Artikel "Mehrere Indikatoren in einem Chart" haben wir uns mit dem grundlegenden Code befasst, der die Verwendung von mehr als einem Indikator in einem Chart-Subfenster ermöglicht. Was wir dort vorgestellt haben, war jedoch nur die Ausgangsbasis für ein viel größeres System.
Datenwissenschaft und maschinelles Lernen (Teil 04): Vorhersage des aktuellen Börsenkrachs
In diesem Artikel werde ich versuchen, unser logistisches Modell zu verwenden, um den Börsencrash auf der Grundlage der Fundamentaldaten der US-Wirtschaft vorherzusagen. NETFLIX und APPLE sind die Aktien, auf die wir uns konzentrieren werden, wobei wir die früheren Börsencrashs von 2019 und 2020 nutzen werden, um zu sehen, wie unser Modell in der aktuellen Krise abschneiden wird.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 22): Neues Auftragssystems (V)
Heute werden wir die Entwicklung des neuen Auftragssystems fortsetzen. Es ist nicht einfach, ein neues System einzuführen, da wir häufig auf Probleme stoßen, die den Prozess erheblich erschweren. Wenn diese Probleme auftreten, müssen wir innehalten und die Richtung, in die wir uns bewegen, neu analysieren.
Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 2): Probabilistische Preisfeldentwicklungsgleichung und das Auftreten des beobachteten Random Walk
Der Artikel befasst sich mit der probabilistischen Preisfeldentwicklungsgleichung und dem Kriterium der bevorstehenden Preisspitzen. Sie zeigt auch das Wesen der Preiswerte auf den Charts und den Mechanismus für das Auftreten eines Random Walk dieser Werte.
DoEasy. Steuerung (Teil 21): SplitContainer-Steuerung. Paneel-Trennlinie
In diesem Artikel werde ich die Klasse eines Hilfstrennlinie für das Paneelobjekt des Steuerelements des SplitContainers erstellen.
Grafiken in der Bibliothek DoEasy (Teil 86): Grafische Objektkollektion - Verwaltung der Eigenschaftsänderungen
In diesem Artikel geht es um die Kontrolle der Änderung von Eigenschaften sowie um das Entfernen und Umbenennen grafischer Objekte in der Bibliothek.
Wer ist wer in der MQL5.community?
Die Webseite MQL5.com vergisst nichts und niemanden! Wie viele Abschlüsse legendär geworden sind, welcher Beliebtheit sich die einzelnen Artikel erfreuen, und wie oft die in der Codedatenbank gespeicherten Programme heruntergeladen wurden, all das ist nur ein kleiner Teil dessen, was MQL5.com nicht vergisst. In den Profilen werden die Errungenschaften jedes Einzelnen aufbewahrt, aber wie sieht das Gesamtbild aus? Dieser Beitrag soll eine Gesamtübersicht über die Leistungen aller Mitglieder der MQL5.community zeigen.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 26): Der Zukunft entgegen (I)
Heute werden wir unser Auftragssystem auf die nächste Stufe bringen. Aber vorher müssen wir noch einige Probleme lösen. Jetzt haben wir einige Fragen, die sich darauf beziehen, wie wir arbeiten wollen und welche Dinge wir während des Handelstages tun.
Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten
In diesem Artikel werde ich eine Liste zur Speicherung von Tickdaten eines einzelnen Symbols erstellen und deren Erstellung und Abruf der benötigten Daten in einem EA überprüfen. Tickdatenlisten, die für jedes verwendete Symbol individuell sind, werden weiterhin eine Kollektion von Tickdaten darstellen.
Erstellung von Zeitreihenvorhersagen mit neuronalen LSTM-Netzen: Normalisierung des Preises und Tokenisierung der Zeit
In diesem Artikel wird eine einfache Strategie zur Normalisierung der Marktdaten anhand der täglichen Spanne und zum Training eines neuronalen Netzes zur Verbesserung der Marktprognosen beschrieben. Die entwickelten Modelle können in Verbindung mit einem bestehenden technischen Analysesystem oder auf eigenständiger Basis verwendet werden, um die allgemeine Marktrichtung vorherzusagen. Der in diesem Artikel skizzierte Rahmen kann von jedem technischen Analysten weiter verfeinert werden, um Modelle zu entwickeln, die sowohl für manuelle als auch für automatisierte Handelsstrategien geeignet sind.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 29): Die sprechende Plattform
In diesem Artikel erfahren Sie, wie Sie die MetaTrader 5-Plattform zum Sprechen bringen. Wie wäre es, wenn wir den EA unterhaltsamer gestalten? Der Handel an den Finanzmärkten ist oft zu langweilig und eintönig, aber wir können diesen Job weniger anstrengend machen. Bitte beachten Sie, dass dieses Projekt für Menschen mit Suchtneigung gefährlich sein kann. Aber im Allgemeinen macht es die Dinge einfach weniger langweilig.
Hinzufügen von Trailing-Stop mit Parabolic SAR
Wenn wir eine Handelsstrategie entwickeln, müssen wir verschiedene Optionen für einen schützenden Stopp testen. Hier bietet sich ein dynamisches Nachziehen des dem Kurs folgenden Stop-Loss-Levels an. Der beste Kandidat dafür ist der Parabolic SAR-Indikator. Es ist schwierig, sich etwas Einfacheres und visuell Klareres vorzustellen.
MQL5 Kochbuch — Datenbank für makroökonomische Ereignisse
Der Artikel behandelt die Möglichkeiten des Umgangs mit Datenbanken, die auf der SQLite-Engine basieren. Die Klasse CDatabase wurde aus Gründen der Bequemlichkeit und der effizienten Nutzung von OOP-Prinzipien entwickelt. Anschließend ist sie an der Erstellung und Verwaltung der Datenbank für makroökonomische Ereignisse beteiligt. Der Artikel enthält Beispiele für die Verwendung mehrerer Methoden der CDatabase-Klasse.
Methoden von William Gann (Teil I): Erstellen des Gann Angles-Indikators
Was ist das Wesen der Gann-Theorie? Wie werden Gann-Winkel konstruiert? Wir werden den Gann Angles-Indikator für MetaTrader 5 erstellen.
Das Preisbewegungsmodell und seine wichtigsten Aspekte. (Teil 3): Berechnung der optimalen Parameter des Börsenhandels
Im Rahmen des vom Autor entwickelten technischen Ansatzes, der auf der Wahrscheinlichkeitstheorie basiert, werden die Bedingungen für die Eröffnung einer profitablen Position gefunden und die optimalen (gewinnmaximierenden) Take-Profit- und Stop-Loss-Werte berechnet.
Grafik in der Bibliothek DoEasy (Teil 80): Die Objektklasse "Geometrischer Animationsrahmen"
In diesem Artikel werde ich den Code der Klassen aus den vorhergehenden Artikeln optimieren und die geometrische Animationsrahmen-Objektklasse erstellen, die es uns ermöglicht, regelmäßige Polygone mit einer bestimmten Anzahl von Scheitelpunkten zu zeichnen.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 21): Neues Auftragssystem (IV)
Schlussendlich wird das visuelle System in Betrieb genommen, obwohl es noch nicht vollständig ist. Hier finden die wichtigsten, gemachten Änderungen ein Ende. Es wird eine ganze Reihe weiterer geben, aber sie sind alle notwendig. Nun, die ganze Arbeit wird recht interessant sein.
Neuronale Netze leicht gemacht (Teil 26): Reinforcement-Learning
Wir untersuchen weiterhin Methoden des Reinforcement-Learnings. Mit diesem Artikel beginnen wir ein weiteres großes Thema, das Reinforcement-Learning. Dieser Ansatz ermöglicht es den Modellen, bestimmte Strategien zur Lösung der Probleme zu entwickeln. Es ist zu erwarten, dass diese Eigenschaft des Reinforcement-Learnings (Lernen durch Verstärkung) neue Horizonte für die Entwicklung von Handelsstrategien eröffnen wird.
Integrieren Sie Ihr eigenes LLM in EA (Teil 2): Beispiel für den Einsatz in einer Umgebung
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung)
Im vorigen Artikel haben wir den Algorithmus Soft Actor-Critic (Akteur-Kritiker) implementiert, konnten aber kein profitables Modell trainieren. Hier werden wir das zuvor erstellte Modell optimieren, um die gewünschten Ergebnisse zu erzielen.
Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)
Der Artikel befasst sich mit einem interessanten, von der unbelebten Natur abgeleiteten Algorithmus - intelligente Wassertropfen (IWD), die den Prozess der Flussbettbildung simulieren. Die Ideen dieses Algorithmus ermöglichten es, den bisherigen Spitzenreiter der Bewertung - SDS - deutlich zu verbessern. Der neue Führende (modifizierter SDSm) befindet sich wie üblich im Anhang.
Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau
Es ist uns gelungen, einen Weg zu finden, das Replay-System (Marktwiederholungssystem) auf realistische und zugängliche Weise umzusetzen. Lassen Sie uns nun unser Projekt fortsetzen und Daten hinzufügen, um das Wiedergabeverhalten zu verbessern.
DoEasy. Steuerung (Teil 27): Arbeiten am WinForms Objekt der ProgressBar
In diesem Artikel werde ich die Entwicklung des ProgressBar-Steuerelements fortsetzen. Insbesondere werde ich die Funktionen zur Verwaltung des Fortschrittsbalkens und der visuellen Effekte erstellen.
Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Zeitreihen in der Bibliothek DoEasy (Teil 52): Plattformübergreifende Eigenschaft für Standardindikatoren mit einem Puffer für mehrere Symbole und Perioden
In diesem Artikel wird das Erstellen des Standardindikators Akkumulation/Distribution mehrere Symbole und Perioden behandelt. Wir verbessern die Bibliotheksklassen in Bezug auf die Indikatoren ein wenig, damit die für die veraltete Plattform MetaTrader 4 entwickelten Programme, die auf dieser Bibliothek basieren, beim Umstieg auf MetaTrader 5 normal funktionieren können.
Zeitreihen in der Bibliothek DoEasy (Teil 55): Die Kollektionsklasse der Indikatoren
Der Artikel setzt die Entwicklung von Objektklassen für die Indikatoren und deren Kollektionen fort. Für jedes Indikatorobjekt erstellen wir seine Beschreibung und die richtige Kollektionsklasse für die fehlerfreie Speicherung und das Abrufen von Indikatorobjekten aus der Kollektionsliste.
Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion
Das Problem des Verstärkungslernens liegt in der Notwendigkeit, eine Belohnungsfunktion zu definieren. Sie kann komplex oder schwer zu formalisieren sein. Um dieses Problem zu lösen, werden aktivitäts- und umweltbasierte Ansätze zum Erlernen von Fähigkeiten ohne explizite Belohnungsfunktion erforscht.
Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt
Es gibt viele technische Hilfsmittel, die zur Visualisierung eines die Kurse umgebenden Kanals verwendet werden können. Eines dieser Hilfsmittel ist der Donchian Channel Indikator. In diesem Artikel erfahren Sie, wie Sie den Donchian Channel Indikator erstellen und wie Sie ihn als nutzerdefinierten Indikator mit EA handeln können.
Einführung in MQL5 (Teil 3): Beherrschung der Kernelemente von MQL5
Entdecken Sie die Grundlagen der MQL5-Programmierung in diesem einsteigerfreundlichen Artikel, in dem wir Arrays, nutzerdefinierte Funktionen, Präprozessoren und die Ereignisbehandlung entmystifizieren, wobei jede Codezeile verständlich erklärt wird. Erschließen wir die Leistungsfähigkeit von MQL5 mit einem einzigartigen Ansatz, der das Verständnis bei jedem Schritt sicherstellt. Dieser Artikel legt den Grundstein für die Beherrschung von MQL5, indem er die Erklärung jeder Codezeile hervorhebt und eine eindeutige und bereichernde Lernerfahrung bietet.
Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA
In diesem Artikel wird die klassische Rasterstrategie untersucht, ihre Automatisierung mit einem Expert Advisor in MQL5 detailliert beschrieben und die ersten Backtest-Ergebnisse analysiert. Wir haben die Notwendigkeit einer hohen Haltekapazität für die Strategie hervorgehoben und Pläne für die Optimierung von Schlüsselparametern wie Abstand, TakeProfit und Losgrößen in zukünftigen Ausgaben skizziert. Die Reihe zielt darauf ab, die Effizienz der Handelsstrategien und die Anpassungsfähigkeit an unterschiedliche Marktbedingungen zu verbessern.
Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols
Da ein Programm bei seiner Arbeit verschiedene Symbole verwenden kann, sollte für jedes dieser Symbole eine eigene Liste erstellt werden. In diesem Artikel werde ich solche Listen zu einer Tickdatenkollektion zusammenfassen. In der Tat wird dies eine reguläre Liste sein, die auf der Klasse des dynamischen Arrays von Zeigern auf Instanzen der Klasse CObject und ihrer Nachkommen der Standardbibliothek basiert.
Verständnis von Programmierparadigmen (Teil 1): Ein verfahrenstechnischer Ansatz für die Entwicklung eines Price Action Expert Advisors
Lernen Sie die Programmierparadigmen und ihre Anwendung in MQL5-Code kennen. In diesem Artikel werden die Besonderheiten der prozeduralen Programmierung untersucht und anhand eines praktischen Beispiels in die Praxis umgesetzt. Sie lernen, wie Sie einen Price Action Expert Advisor mit dem EMA-Indikator und Kerzen-Kursdaten entwickeln. Außerdem führt der Artikel in das Paradigma der funktionalen Programmierung ein.
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen
In diesem Artikel werden wir erörtern, wie wir Expert Advisors erstellen können, die in der Lage sind, Handelsstrategien auf der Grundlage der vorherrschenden Marktbedingungen eigenständig auszuwählen und zu ändern. Wir werden etwas über Markov-Ketten lernen und wie sie algorithmischen Händler helfen können.
Mehrere Indikatoren in einem Chart (Teil 04): Weiterentwicklung zum Expert Advisor
In meinen früheren Artikeln habe ich erklärt, wie man einen Indikator mit mehreren Unterfenstern erstellt, was bei der Verwendung von nutzerdefinierten Indikatoren interessant wird. Dieses Mal werden wir sehen, wie man mehrere Fenster einem Expert Advisor hinzufügen kann.
Neuronale Netze leicht gemacht (Teil 51): Behavior-Guided Actor-Critic (BAC)
Die letzten beiden Artikel befassten sich mit dem Soft Actor-Critic-Algorithmus, der eine Entropie-Regularisierung in die Belohnungsfunktion integriert. Dieser Ansatz schafft ein Gleichgewicht zwischen Umwelterkundung und Modellnutzung, ist aber nur auf stochastische Modelle anwendbar. In diesem Artikel wird ein alternativer Ansatz vorgeschlagen, der sowohl auf stochastische als auch auf deterministische Modelle anwendbar ist.
Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji
Der Metabar-Indikator erkennt mehr Kerzen als der herkömmliche Indikator. Prüfen wir, ob dies einen echten Nutzen für den automatisierten Handel bringt.
Berg- oder Eisbergdiagramme
Was halten Sie von der Idee, der MetaTrader 5-Plattform einen neuen Chart-Typ hinzuzufügen? Einige Leute sagen, dass es an einigen Dingen mangelt, die andere Plattformen bieten. Aber die Wahrheit ist, dass MetaTrader 5 eine sehr praktische Plattform ist, da sie Ihnen Dinge ermöglicht, die auf vielen anderen Plattformen nicht (oder zumindest nicht ohne weiteres) möglich sind.
Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz
Dieser Artikel berichtet über die ersten Versuche bei der Entwicklung eines nativen MQTT-Clients für MQL5. MQTT ist ein Client-Server-Publish/Subscribe-Messaging-Transportprotokoll. Es ist leichtgewichtig, offen, einfach und so konzipiert, dass sie leicht zu implementieren ist. Diese Eigenschaften machen es ideal für den Einsatz in vielen Situationen.
Das Preisbewegungsmodell und seine wichtigsten Bestimmungen (Teil 1): Die einfachste Modellversion und ihre Anwendungen
Der Artikel liefert die Grundlagen für eine mathematisch rigorose Theorie der Preisbewegungen und des Funktionierens des Marktes. Bis heute gibt es keine mathematisch strenge Theorie der Preisbewegung. Stattdessen haben wir es mit erfahrungsbasierten Annahmen zu tun, die besagen, dass sich der Preis nach einem bestimmten Muster in eine bestimmte Richtung bewegt. Natürlich wurden diese Annahmen weder durch Statistiken noch durch die Theorie gestützt.
Neuronale Netze leicht gemacht (Teil 30): Genetische Algorithmen
Heute möchte ich Ihnen eine etwas andere Lernmethode vorstellen. Wir können sagen, dass sie von Darwins Evolutionstheorie entlehnt ist. Sie ist wahrscheinlich weniger kontrollierbar als die zuvor besprochenen Methoden, aber sie ermöglicht die Ausbildung nicht-differenzierbarer Modelle.