论坛最热门主题
- 文章 "MQL5.community的支付系统" 16 新评论
- 程序库: MT4 订单快速报告 5 新评论
- 用 MQL 编写的用户界面图库 5 新评论
正确理解不同的想法可以让我们事半功倍。在本文中,我们将探讨为什么在服务与图表交互之前需要配置模板。此外,如果我们改进鼠标指标,这样我们就可以用它做更多的事情呢?
在本文中,我们将探讨2009年开发的人工蜂巢算法(ABHA)。该算法旨在解决连续优化问题。我们将研究ABHA如何从蜂群的行为中汲取灵感,其中每只蜜蜂都有独特的角色,帮助它们更有效地寻找资源。
在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
机器学习模型带有各种可调节的参数。在本系列文章中,我们将探讨如何使用SciPy库来定制您的AI模型,使其适应特定的市场。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
如何从 MetaTrader 市场购买自动交易以及如何安装?
MetaTrader 市场的产品可以从 MQL5.com 网站购买,或者直接从 MetaTrader 4 和 MetaTrader 5 交易平台购买。选择一个想要的适合您交易风格的产品,使用您想要的支付方法付款,然后就能激活产品。
需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
在本文中,我们继续实现 ATFNet 模型的方式,其在时间序列预测内可自适应地结合 2 个模块(频域和时域)的结果。
释放您的潜力!您会被无数机会包围。发现开启您的MQL5之旅或将其提升到更高水平的三大顶级秘诀。让我们深入探讨适合初学者和专业人士的技巧和窍门。
如何从 MetaTrader 市场购买自动交易以及如何安装?
MetaTrader 市场的产品可以从 MQL5.com 网站购买,或者直接从 MetaTrader 4 和 MetaTrader 5 交易平台购买。选择一个想要的适合您交易风格的产品,使用您想要的支付方法付款,然后就能激活产品。
与别处相比,在 MQL5 应用商店购买交易机器人有一个明显的优势 - 其提供的自动化系统,可直接在 MetaTrader 5 终端内接受完整测试。购买前,EA 交易可以、也应该在内置的策略测试程序中,以所有不利的模式谨慎运行,从而对此系统有一个全面的认识。
在人工智能飞速发展的今天,大语言模型(LLM)是人工智能的重要组成部分,所以我们应该思考如何将强大的 LLM 融入到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
这种创新的交易机器人将 MetaTrader 5 与 Python 结合,利用实时社交媒体情绪分析为自动化交易决策提供支持。通过分析与特定金融工具相关的 Twitter 情绪,该机器人将社交媒体趋势转化为可操作的交易信号。它采用客户端-服务器架构,并通过套接字通信实现无缝交互,将 MT5 的交易能力与 Python 的数据处理能力完美结合。该系统展示了将量化金融与自然语言处理相结合的潜力,提供了一种利用替代数据源的尖端算法交易方法。尽管显示出巨大潜力,但该机器人也突显了未来改进的方向,包括采用更先进的情绪分析技术以及改进风险管理策略。
在本文中,我们讨论了如何将统计因果关系应用于识别预测变量。我们将探讨因果关系与传递熵(Transfer Entropy, TE)之间的联系,并展示用于检测两个变量之间信息方向性传递的MQL5代码。