已发布文章 "创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram"。

在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
Python是一种广为人知且流行的语言,具有许多功能,尤其是在金融、数据科学、人工智能和机器学习领域。Python也是一种强大的工具,可以在交易中发挥作用。MQL5允许我们将这种强大的语言作为集成工具,以高效地实现我们的目标。在本文中,我们将在了解一些Python的基本信息后,分享如何在MQL5中使用Python作为集成工具。
在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
我们继续讨论时间序列的分段线性表示的运用,这在前一篇文章中已经开始。今天,我们要看看如何将该方法与其它时间序列分析方法相结合,从而提高价格趋势预测品质。
本文概述了基于 RSI 和移动平均线指标实现 Deus EA 以指导自动交易的步骤。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
如何从 MetaTrader 市场购买自动交易以及如何安装?
MetaTrader 市场的产品可以从 MQL5.com 网站购买,或者直接从 MetaTrader 4 和 MetaTrader 5 交易平台购买。选择一个想要的适合您交易风格的产品,使用您想要的支付方法付款,然后就能激活产品。
集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。
本文中,我们将了解无政府社会优化(Anarchic Society Optimization,ASO)算法,并探讨一个基于无政府社会(一个摆脱中央权力和各种等级制度的异常社会交互系统)中参与者非理性与冒险行为的算法是如何能够探索解空间并避免陷入局部最优陷阱的。本文提出了一种适用于连续问题和离散问题的统一ASO结构。
赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。
这篇文章与我以前发表的有些不同。在本文中,我们将谈谈时间序列的另类表示。时间序列的分段线性表示是一种利用涵盖小间隔的线性函数逼近时间序列的方法。
在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。
在本文中,我们演示了一种在流行的Linux版本(Ubuntu和Debian)上安装MetaTrader 5的简单方法。这些系统广泛用于服务器硬件以及交易者的个人计算机上。
MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。