有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
让手动回测变得简单:为MQL5策略测试器构建自定义工具包

让手动回测变得简单:为MQL5策略测试器构建自定义工具包

在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
preview
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
交易中的神经网络:场景感知物体检测(HyperDet3D)

交易中的神经网络:场景感知物体检测(HyperDet3D)

我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
交易中的神经网络:优化时间序列预测变换器(LSEAttention)

交易中的神经网络:优化时间序列预测变换器(LSEAttention)

LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
preview
您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
preview
Connexus观察者模式(第8部分):添加一个观察者请求

Connexus观察者模式(第8部分):添加一个观察者请求

在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
preview
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。
preview
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新

利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新

本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
preview
交易中的神经网络:降低锐度强化变换器效率(SAMformer)

交易中的神经网络:降低锐度强化变换器效率(SAMformer)

训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
preview
Connexus助手(第五部分):HTTP方法和状态码

Connexus助手(第五部分):HTTP方法和状态码

在本文中,我们将了解HTTP方法和状态码,这是网络上客户端与服务器之间通信的两个非常重要的部分。了解每种方法的作用,可以让您更精确地发出请求,告知服务器您想要执行的操作,从而提高效率。
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
preview
Connexus请求解析(第六部分):创建HTTP请求与响应

Connexus请求解析(第六部分):创建HTTP请求与响应

在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
preview
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法

基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法

在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
preview
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
preview
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
preview
探索达瓦斯箱体突破策略中的高级机器学习技术

探索达瓦斯箱体突破策略中的高级机器学习技术

达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。
preview
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块

在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块

欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
preview
交易中的神经网络:具有层化记忆的智代

交易中的神经网络:具有层化记忆的智代

模仿人类认知过程的层化记忆方式令复杂金融数据的处理、以及适配新信号成为可能,因此在动态市场中提升投资决策的有效性。
preview
将人工智能(AI)模型集成到已有的MQL5交易策略中

将人工智能(AI)模型集成到已有的MQL5交易策略中

本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

我们邀请您来探索 FinAgent,一个多模态金融交易智代框架,设计用来分析反映市场动态和历史交易形态的各种数据。