有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
交易中的神经网络:层次化向量变换器(HiVT)

交易中的神经网络:层次化向量变换器(HiVT)

我们邀请您来领略层次化矢量转换器(HiVT)方法,其专为快速、准确地预测多模态时间序列而开发。
preview
创建动态多货币对EA(第1部分):货币正相关性与负相关性

创建动态多货币对EA(第1部分):货币正相关性与负相关性

动态多货币对EA利用正负相关性来优化EA的交易表现。通过分析实时市场数据,它识别并利用货币对之间的相关性。
preview
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
preview
使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

使用MQL5经济日历进行交易(第二部分):创建新闻交易面板

在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。
preview
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。
preview
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
preview
交易中的神经网络:点云分析(PointNet)

交易中的神经网络:点云分析(PointNet)

直接分析点云避免了不必要的数据增长,并改进了模型在分类和任务分段时的性能。如此方式对于原始数据中的扰动展现出高性能和稳健性。
preview
交易中的神经网络:点云的层次化特征学习

交易中的神经网络:点云的层次化特征学习

我们继续研究从点云提取特征的算法。在本文中,我们将领略提升 PointNet 方法效率的机制。
preview
您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

您应当知道的 MQL5 向导技术(第 12 部分):牛顿多项式

牛顿多项式,其依据一组少量点创建二次方程,是一种古老但有趣的时间序列观察方式。在本文中,我们尝试探讨这种方式在哪些方面对交易者有用,并解决其局限性。
preview
Connexus的头(第三部分):掌握HTTP请求头的使用方法

Connexus的头(第三部分):掌握HTTP请求头的使用方法

我们继续开发Connexus库。在本章中,我们探讨HTTP协议中请求头的概念,解释它们是什么、它们的用途以及如何在请求中使用它们。我们将涵盖用于与API通信的主要头信息,并展示了如何在库中配置它们的实例。
preview
神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
HTTP和Connexus(第2部分):理解HTTP架构和库设计

HTTP和Connexus(第2部分):理解HTTP架构和库设计

本文探讨了HTTP协议的基础知识,涵盖了主要方法(GET、POST、PUT、DELETE)、状态码以及URL的结构。此外,还介绍了Conexus库的构建起点,以及CQueryParam和CURL类,这些类用于在HTTP请求中操作URL和查询参数。
preview
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
preview
神经网络变得简单(第 87 部分):时间序列补片化

神经网络变得简单(第 87 部分):时间序列补片化

预测在时间序列分析中扮演重要角色。在新文章中,我们将谈谈时间序列补片化的益处。
preview
构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。
preview
您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。
preview
交易中的神经网络:点云变换器(Pointformer)

交易中的神经网络:点云变换器(Pointformer)

在本文中,我们将说道有关使用注意力方法解决点云中物体检测问题的算法。点云中的物体检测对于很多现世应用都很重要。
preview
构建K线图趋势约束模型(第5部分):通知系统(第二部分)

构建K线图趋势约束模型(第5部分):通知系统(第二部分)

今天,我们将讨论如何使用MQL5与Python和Telegram Bot API相结合,为MetaTrader 5的指标通知集成一个实用的Telegram应用。我们将详细解释所有内容,确保每个人都不会错过任何要点。完成这个项目后,您将获得宝贵的见解,可以在自己的项目中加以应用。
preview
如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。
preview
交易中的神经网络:时间序列的分段线性表示

交易中的神经网络:时间序列的分段线性表示

这篇文章与我以前发表的有些不同。在本文中,我们将谈谈时间序列的另类表示。时间序列的分段线性表示是一种利用涵盖小间隔的线性函数逼近时间序列的方法。
preview
Connexus中的正文(第四部分):添加HTTP请求正文

Connexus中的正文(第四部分):添加HTTP请求正文

在本文中,我们探讨了HTTP请求中的正文概念,这对于发送诸如JSON和纯文本之类的数据至关重要。我们讨论并解释了如何正确地使用正文,并结合适当的头部信息。此外,我们还介绍了Connexus库中的ChttpBody类,它将简化对请求正文的处理。
preview
在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在本文中,我们将增强之前创建过的管理面板的响应性。此外,我们还将探讨在交易信号背景下快速消息传递的重要性。
preview
神经网络变得简单(第 86 部分):U-形变换器

神经网络变得简单(第 86 部分):U-形变换器

我们继续研究时间序列预测算法。在本文中,我们将讨论另一种方法:U-形变换器。
preview
您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。
preview
神经网络变得简单(第 91 部分):频域预测(FreDF)

神经网络变得简单(第 91 部分):频域预测(FreDF)

我们继续探索时间序列在频域中的分析和预测。在本文中,我们将领略一种在频域中预测数据的新方法,它可被加到我们之前研究过的众多算法当中。
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
您应当知道的 MQL5 向导技术(第 20 部分):符号回归

您应当知道的 MQL5 向导技术(第 20 部分):符号回归

符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
preview
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器

ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
preview
您应当知道的 MQL5 向导技术(第 23 部分):CNNs

您应当知道的 MQL5 向导技术(第 23 部分):CNNs

卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
preview
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
随机优化和最优控制示例

随机优化和最优控制示例

这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

在本文中,我们将现有的用于从 MQL5 向 Telegram 发送消息和截图的代码重构为可重复使用的模块化函数。这将简化流程,实现跨多个实例的更高效执行和更轻松的代码管理。