开发多币种 EA 交易 (第 10 部分):从字符串创建对象
EA 开发计划包括几个阶段,中间结果保存在数据库中,它们只能作为字符串或数字而不是对象再次从那里读取。因此,我们需要一种方法来根据从数据库读取的字符串重新创建 EA 中的所需对象。
您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN
学习率是许多机器学习算法在训练过程期间,朝向训练目标迈进的步长。我们检验了其众多调度和格式对于生成式对抗网络性能的影响,该神经网络类型我们在早前文章中已检验过。
神经网络变得简单(第 84 部分):可逆归一化(RevIN)
我们已经知晓,输入数据的预处理对于模型训练的稳定性扮演重要角色。为了在线处理 “原始” 输入数据,我们往往会用到批量归一化层。但有时我们需要一个逆过程。在本文中,我们将讨论解决该问题的可能方式之一。
开发多币种 EA 交易(第 12 部分):开发自营交易级别风险管理器
在正在开发的 EA 中,我们已经有了某种控制回撤的机制。但它具有概率性,因为它是以历史价格数据的测试结果为基础的。因此,回撤有时会超过最大预期值(尽管概率很小)。让我们试着增加一种机制,以确保遵守指定的回撤水平。
《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》
循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
如何构建并优化基于成交量的交易系统——蔡金资金流指标(Chaikin Money Flow - CMF)
在本文中,我们将在明确如何构建、计算和使用基于成交量的指标——蔡金资金流指标(Chaikin Money Flow,CMF)之后,对该指标进行介绍。我们将了解如何构建自定义指标。我们会分享一些可用的简单策略,然后对这些策略进行测试,以了解哪种策略更优。
您应当知道的 MQL5 向导技术(第 46 部分):Ichimoku
Ichimuko Kinko Hyo 是日本著名的指标,可当作趋势识别系统。我们如之前类似文章所为,逐个形态地验证这一点,并借助 MQL5 向导的库类并汇编,来评估其策略和测试报告。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
构建一个用于实现带约束条件的自定义最大值的通用优化公式(GOF)
在这篇文章中,我们将介绍一种在MetaTrader 5终端的设置选项卡中选择“自定义最大值”时,实现具有多个目标和约束的优化问题的方法。举例来说,优化问题可以是:最大化利润因子、净利润和恢复因子,同时满足以下条件:回撤小于10%,连续亏损次数少于5次,每周交易次数多于5次。
神经网络变得简单(第 94 部分):优化输入序列
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
您应当知道的 MQL5 向导技术(第 40 部分):抛物线止损和反转(PSAR)
抛物线止损和反转(PSAR) 是趋势确认、和趋势终结点的指标。因为它在识别趋势方面滞后,所以它的主要目的是为持仓定位尾随止损。然而,我们要探索它是否真的可以当作智能系统的交易信号,这要归功于由向导汇编智能系统的自定义信号类。
价格行为分析工具包开发系列(第4部分):分析预测型EA
我们不再局限于仅在图表上查看分析后的指标,而是将视野拓展至更广阔的范畴,其中包括与Telegram的集成。这一增强功能使得重要结果能够通过Telegram应用程序直接发送至您的移动设备。请随我们一同在本篇文章中探索这一过程。
使用MQL5经济日历进行交易(第二部分):创建新闻交易面板
在本文中,我们使用MQL5经济日历创建了一个实用的新闻交易面板,来增强我们的交易策略。我们首先设计布局,重点关注事件名称、重要性和时间等关键元素,然后在MQL5中进行设置。最后,我们实现了一个过滤系统,只显示相关性最强的新闻,为交易者快速提供有影响力的经济事件。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
MQL5 简介(第 9 部分):理解和使用 MQL5 中的对象
学习使用当前和历史数据在 MQL5 中创建和自定义图表对象。本基于项目的指南可帮助您可视化交易并实际应用 MQL5 概念,从而更容易构建适合您交易需求的工具。
重塑经典策略(第六部分):多时间框架分析
在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。
基于Python和MQL5的特征工程(第二部分):价格角度
在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
如何使用 MetaTrader 和 Google Sheets 创建交易日志
使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
您应当知道的 MQL5 向导技术(第 42 部分):ADX 振荡器
ADX 是一些交易者用来衡量主流趋势强度的另一个相对热门的技术指标。作为其它两个指标的组合,它体现为振荡器,在本文中我们借助 MQL5 向导汇编、及其支持类,来探索其形态。
流动性攫取交易策略
流动性攫取交易策略是智能资金概念(SMC)的核心组成部分,旨在识别并利用市场中机构投资者的操作行为。该策略聚焦于高流动性区域(如支撑位或阻力位),在这些区域,大额订单可引发价格波动,随后市场恢复原有趋势。本文将详细阐释流动性攫取的概念,并概述如何在MQL5中开发流动性攫取交易策略的智能交易系统(EA)。
开发多币种 EA 交易 (第 5 部分):可变仓位大小
在前面的部分中,我们正在开发的智能交易系统 (EA) 只能使用固定的仓位大小进行交易。这对于测试来说是可以接受的,但在真实账户交易时并不建议这样做。让我们能够使用可变的仓位大小进行交易。
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期
在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。
在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM
限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)
生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
您应当知道的 MQL5 向导技术(第 53 部分):市场促进指数
市场促进指数是比尔·威廉姆斯(Bill Williams)的另一个指标,旨在衡量价格走势与成交量联动的效率。一如既往,我们将在由向导汇编信号类的范畴内分析该指标的各种形态,并为各种形态呈现多种测试报告和分析。
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本
支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
构建K线趋势约束模型(第五部分):通知系统(第三部分)
本系列文章的这一部分专门介绍如何将WhatsApp与MetaTrader 5集成以实现通知功能。我们包含一张流程图以简化理解,并将讨论在集成过程中安全措施的重要性。指标的主要目的是通过自动化的简化分析过程,并且它们应包含通知方法,以便在满足特定条件时向用户发出警报。欲了解更多信息,请阅读本文。
MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA
在本文中,我们将在 MQL5 中构建一个使用动态仓位缩放的网格交易EA。我们将涵盖策略设计、代码实现和回测过程。最后,我们将分享用于优化该自动化交易系统的关键方案和最佳实践。
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)
在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
在 MQL5 中创建交易管理员面板(第五部分):双因素认证(2FA)
今天,我们将讨论如何增强当前正在开发的交易管理员面板的安全性。我们将探讨如何在新的安全策略中实施 MQL5,并将 Telegram API 集成到双因素认证(2FA)中。本次讨论将提供有关 MQL5 在加强安全措施方面的应用的宝贵见解。此外,我们还将研究 MathRand 函数,重点关注其功能以及如何在我们构建的安全框架中有效利用它。继续阅读以了解更多信息!
开发多币种 EA 交易 (第 13 部分):自动化第二阶段 — 分组选择
我们已经实现了自动化优化的第一阶段。我们根据若干标准对不同的交易品种和时间框架进行优化,并将每次通过的结果信息存储在数据库中。现在我们将从第一阶段找到的参数集中选择最佳组。
开发多币种 EA 交易(第 20 部分):整理自动项目优化阶段的输送机(一)
我们已经创建了不少有助于安排自动优化的组件。在创建过程中,我们遵循了传统的循环结构:从创建最小的工作代码到重构和获得改进的代码。是时候开始清理我们的数据库了,这也是我们正在创建的系统中的一个关键组件。
交易中的神经网络:节点-自适应图形表征(NAFS)
我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。