
随机优化和最优控制示例
这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。

交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。

您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化
批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。

将您自己的 LLM 集成到 EA 中(第 4 部分):使用 GPU 训练自己的 LLM
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法
在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP
我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。

MetaTrader 中的 Multibot(第二部分):改进的动态模板
在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。

您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN
学习率是许多机器学习算法在训练过程期间,朝向训练目标迈进的步长。我们检验了其众多调度和格式对于生成式对抗网络性能的影响,该神经网络类型我们在早前文章中已检验过。

重塑经典策略(第六部分):多时间框架分析
在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。

数据科学和机器学习(第 27 部分):MetaTrader 5 中训练卷积神经网络(CNN)交易机器人 — 值得吗?
卷积神经网络(CNN)以其在检测图像和视频形态方面的出色能力而闻名,其应用涵盖众多领域。在本文中,我们探讨了 CNN 在金融市场中识别有价值形态,并为 MetaTrader 5 交易机器人生成有效交易信号的潜力。我们来发现这种深度机器学习技术如何能撬动更聪明的交易决策。

数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络
在上一篇文章中,我们讨论了一个简单的 RNN,尽管它对理解数据中的长期依赖关系无能为力,却仍能制定可盈利策略。在本文中,我们将讨论长-短期记忆(LSTM)、门控递归单元(GRU)。引入这两个是为了克服简单 RNN 的缺点,并令其更聪慧。

创建 MQL5-Telegram 集成 EA 交易 (第二部分):从 MQL5 发送信号到 Telegram
在本文中,我们创建了一个 MQL5-Telegram 集成 EA 交易,将移动平均线交叉信号发送到 Telegram。我们详细介绍了从移动平均线交叉生成交易信号的过程,在 MQL5 中实现必要的代码,并确保集成无缝工作。结果是系统可以直接向您的 Telegram 群聊提供实时交易提醒。

重构经典策略(第五部分):基于USDZAR的多品种分析
在本系列文章中,我们重新审视经典策略,看看是否可以使用人工智能来改进这些策略。在今天的文章中,我们将研究一种使用一篮子具有相关性的金融产品来进行多品种分析的流行策略,我们将重点关注货币对 USDZAR。

交易中的神经网络:时空神经网络(STNN)
在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。

创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram
在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。

您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数
赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。

MQL5集成:Python
Python是一种广为人知且流行的语言,具有许多功能,尤其是在金融、数据科学、人工智能和机器学习领域。Python也是一种强大的工具,可以在交易中发挥作用。MQL5允许我们将这种强大的语言作为集成工具,以高效地实现我们的目标。在本文中,我们将在了解一些Python的基本信息后,分享如何在MQL5中使用Python作为集成工具。

您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易
默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。

开发多币种 EA 交易系统(第 16 部分):不同报价历史对测试结果的影响
正在开发中的 EA 预计在与不同经纪商进行交易时都会表现出良好的效果。但目前我们一直使用 MetaQuotes 模拟账户的报价进行测试。让我们看看我们的 EA 是否准备好使用与测试和优化期间使用的报价不同的交易账户。

构建K线图趋势约束模型(第8部分):EA的开发(一)
在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。

神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。

MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗
基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。

将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLMs 开发和测试交易策略(一)- 微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。

交易中的神经网络:用于时间序列预测的轻量级模型
轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。

您应当知道的 MQL5 向导技术(第 23 部分):CNNs
卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。

神经网络变得简单(第 94 部分):优化输入序列
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。

您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)
生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。