将您自己的 LLM 集成到 EA 中(第 3 部分):使用 CPU 训练自己的 LLM
在人工智能飞速发展的今天,大语言模型(LLM)是人工智能的重要组成部分,所以我们应该思考如何将强大的 LLM 融入到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
您应当知道的 MQL5 向导技术(第 11 部分):数字墙
数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。
使用Python和MQL5进行多品种分析(第三部分):三角汇率
交易者常常因虚假信号而面临资金回撤,而等待确认信号又可能导致错失交易机会。本文介绍了一种三角交易策略,该策略利用白银兑美元(XAGUSD)和白银兑欧元(XAGEUR)的价格,以及欧元兑美元(EURUSD)的汇率,来过滤市场噪音。通过利用跨市场关系,交易者可以揭示隐藏的市场情绪,并实时优化交易入场点。
价格行为分析工具包开发(第六部分):均值回归信号捕捉器
有些概念乍一看似乎简单明了,但在实际操作中的实现却颇具挑战。在接下来的文章中,将带您了解我们创新性地自动化一款运用均值回归策略分析市场的智能交易系统(EA)的方法。与我们一同揭开这一激动人心的自动化过程的神秘面纱吧。
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)
在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。
神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)
最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试
本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram
在本文中,我们创建一个 MQL5 EA 交易,将图表截图编码为图像数据并通过 HTTP 请求将其发送到 Telegram 聊天。通过集成图片编码和传输,我们直接在 Telegram 内通过可视化交易洞察增强了现有的 MQL5-Telegram 系统。
软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2
在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。
结合基本面和技术分析策略在MQL5中的实现(适合初学者)
在本文中,我们将讨论如何将趋势跟踪和基本面原则无缝整合到一个EA中,以构建一个更加稳健的交易策略。本文将展示任何人都可以轻松上手,使用MQL5构建定制化交易算法的过程。
开发回放系统(第29部分):EA 交易项目——C_Mouse类(三)
在改进了C_Mouse类之后,我们可以专注于创建一个类,该类旨在为我们的分析创建一个全新的框架。我们不会使用继承或多态性来创建这个新类。相反,我们将改变,或者更好地说,在价格线中添加新的对象。这就是我们在这篇文章中要做的。在下一节中,我们将研究如何更改分析。所有这些都将在不更改C_Mouse类的代码的情况下完成。实际上,使用继承或多态性会更容易实现这一点。然而,还有其他方法可以达到同样的结果。
MQL5 中的范畴论 (第 17 部分):函子与幺半群
本文是我们系列文章的最后一篇,将函子作为一个主题来讨论,且把幺半群作为一个范畴来重新审视。幺半群已在我们的系列中多次讲述,于此配合多层感知器帮助确定持仓规模。
MetaTrader 中的 Multibot(第二部分):改进的动态模板
在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮
在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。
您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数
赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。
交易中的神经网络:时空神经网络(STNN)
在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库
了解如何在 MQL5 代码或项目中开发和实现全面的挂单 EX5库。本文将向您展示如何创建一个全面的挂单管理 EX5 库,并通过构建交易面板或图形用户界面(GUI)来指导您导入和实现它。EA 交易订单面板将允许用户直接从图表窗口上的图形界面打开、监控和删除与指定幻数相关的挂单。
使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能
在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择
让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略
在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。
这种方法确保了自动化交易中的精确性和适应性。
创建一个基于日波动区间突破策略的 MQL5 EA
在本文中,我们将创建一个基于日波动区间突破策略的 MQL5 EA。我们阐述该策略的关键概念,设计EA框架蓝图,并在 MQL5 语言中实现突破策略逻辑。最后,我们将探讨用于回测和优化EA的技术,以最大限度地提高其有效性。
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)
了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统
在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
开发回放系统(第31部分):EA交易项目——C_Mouse类(五)
我们需要一个计时器,它可以显示距离回放/模拟运行结束还有多少时间。乍一看,这可能是一个简单快捷的解决方案。许多人只是尝试适应并使用交易服务器使用的相同系统。但有一件事是很多人在考虑这个解决方案时没有考虑的:对于回放,甚至更多的是模拟,时钟的工作方式不同。所有这些都使创建这样一个系统变得复杂。
神经网络变得轻松(第五十五部分):对比内在控制(CIC)
对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
您应当知道的 MQL5 向导技术(第 35 部分):支持向量回归
支持向量回归是一种理想主义的途径,寻找最能描述两组数据之间关系的函数或“超平面”。我们尝试在 MQL5 向导的自定义类内利用这一点来进行时间序列预测。
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)
在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
利用CatBoost机器学习模型作为趋势跟踪策略的过滤器
CatBoost是一种强大的基于树的机器学习模型,擅长基于静态特征进行决策。其他基于树的模型,如XGBoost和随机森林(Random Forest),在稳健性、处理复杂模式的能力以及可解释性方面具有相似特性。这些模型应用广泛,可用于特征分析、风险管理等多个领域。在本文中,我们将逐步介绍如何将训练好的CatBoost模型用作经典移动平均线交叉趋势跟踪策略的过滤器。
Connexus入门(第一部分):如何使用WebRequest函数?
本文是‘Connexus’库开发系列的开篇之作,旨在为MQL5环境下的HTTP请求提供便利支持。该项目的目的是为终端用户提供这个机会,并展示如何使用这个辅助库。我打算尽可能地简化,以便于学习,从而为进一步开发提供可能性。
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统
本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。