
MQL5 中的矩阵和向量
运用特殊的数据类型“矩阵”和“向量”,可以创建非常贴合数学符号本意的代码。 运用这些方法,您可以避免创建嵌套循环,或在计算中分心记忆正确的数组索引。 因此,矩阵和向量方法的运用能为开发复杂程序提高可靠性和速度。


用 MQL5 创建“贪吃蛇”游戏
本文描述一个“贪吃蛇”游戏编程的例子。在 MQL5 中,游戏编程变为可能主要是因为事件处理功能。面向对象编程大大简化了这个过程。在本文中,您将学习事件处理功能,标准 MQL5 库类的使用例子以及定期函数调用的详细信息。

神经网络变得轻松(第五部分):OpenCL 中的多线程计算
我们早前已经讨论过某些类型的神经网络实现。 在所研究的网络中,每个神经元都重复相同的操作。 逻辑上进一步应利用现代技术提供的多线程计算功能来加快神经网络学习过程。 本文介绍了一种可能的实现方式。

神经网络变得轻松(第四部分):循环网络
我们继续研究神经网络的世界。 在本文中,我们将研究另一种类型的神经网络,循环网络。 此类型建议与时间序列配合使用,其在 MetaTrader 5 交易平台中由价格图表呈现。


图形界面 II: 设置库的事件处理函数 (第三章)
之前的文章中包含了用于创建主菜单构成部分类的实现. 现在, 是时候在主基础类和创建控件的类中关注事件处理函数了. 我们将特别关注根据鼠标光标的位置来管理图表的状态.


处理 MQL5“EA 交易”的 GSM 调制解调器
当前,有相当数量的方式可以对交易账户进行轻松的远程监视:移动终端、推送通知、ICQ 。但都需要互联网连接。本文描述了“EA 交易”的创建程序,即使在移动互联网不可用的情况下,其也允许您通过电话或短信与交易终端保持联系。

了解使用MQL5下单
在创建任何交易系统时,我们都需要有效地处理一项任务。这项任务是下单,或者让创建的交易系统自动处理订单,因为它在任何交易系统中都至关重要。因此,您将在本文中找到您需要了解的关于这项任务的大多数主题,以有效地创建您的交易系统。

构建自动运行的 EA(第 06 部分):账户类型(I)
今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 当前状态下,我们的 EA 已能在任何状况下工作,但尚未准备好自动化。 我们仍然需要在几点上努力。

MetaTrader 5 的 WebSocket — 使用 Windows API
在本文中,我们将使用 WinHttp.dll 针对 MetaTrader 5 平台创建 WebSocket 客户端程序。 客户端最终将作为一个类实现,并借助 Binary.com 的 WebSocket API 进行测试。

从头开始开发智能交易系统(第 22 部分):新订单系统 (V)
今天,我们将继续开发新订单系统。 实现一个新系统并非那么容易,因为我们经常会遇到各种问题令过程复杂化。 当这些问题出现时,我们必须停下来重新分析我们前进的方向。

从头开始开发智能交易系统(第 9 部分):概念上的飞跃 (II)
在本文中,我们将把 Chart Trade 这个应用程序放置在浮动窗口当中。 在前一篇中,我们创建了一个基本系统,该系统支持在浮动窗口中使用模板。

一步步学习如何利用公允价值缺口(FVG)或市场不平衡性来交易的策略:一种“聪明资金”的交易方法
基于公允价值缺口(FVG)交易策略的MQL5自动化交易算法创建与分步实施指南。这一教程旨在为无论是初学者还是经验丰富的交易者提供一个实用的EA创建指南。

构建自动运行的 EA(第 09 部分):自动化(I)
尽管创建自动 EA 并非一项非常困难的任务,但在缺乏必要知识的情况下可能会犯许多错误。 在本文中,我们将研究如何构建初级自动化,其中包括创建一个触发器来激活盈亏平衡和尾随停止价位。


基于预定义的风险和风险/回报比建立互动式半自动拖放“EA 交易”
部分交易人员选择自动执行所有交易,而另外一些交易人员基于多个指标的输出混合使用自动和手动交易。作为后者中的一员,我需要一个互动式工具以直接从图表动态地评估风险和回报价格水平。本文将介绍通过预定义的资产净值风险和风险/回报比实施互动式半自动“EA 交易”的方法。“EA 交易”风险、风险/回报和手数参数可于运行时期间在 EA 面板上更改。

从头开始开发智能交易系统(第 7 部分):添加价格成交量(Volume)指标(I)
这是目前最强力的指标之一。 任何满怀信心尝试交易的人都必须在他们的图表上拥有这个指标。 最常用的指标都是那些喜欢在交易时“读磁带”的人所采用。 此外,而该指标则是那些交易时仅依据价格动作的人会采用。

掌握市场动态:创建有关支撑与阻力位策略的EA
一个关于基于支撑位与阻力位策略开发自动化交易算法的全面指南。详细介绍了在MQL5中创建EA以及在MetaTrader 5中对其进行测试的所有方面——从分析价格区间行为到风险管理。

构建自动运行的 EA(第 08 部分):OnTradeTransaction
在本文中,我们将目睹如何利用事件处理系统快速有效地处理与订单系统相关的问题。 配合这个系统,EA 就能更快地工作,如此它就不必持续不断地搜索所需的数据。


来自专业程序员的提示(第二部分):在智能交易系统、脚本和外部程序之间存储和交换参数
这些来自专业程序员关于方法、技术和辅助工具的一些提示,可令编程变得更轻松。 我们将讨论终端重启(关闭)后如何恢复参数。 所有示例都是来自我的 Cayman 项目的真实工作代码片段。

在莫斯科交易所(MOEX)里使用限价订单进行自动网格交易
本文研究针对 MetaTrader 5 平台开发 MQL5 智能交易系统(EA),旨在能在 MOEX 上操作。 该 EA 采用网格策略,面向 MetaTrader 5 终端,并在 MOEX 上进行交易。 EA 包括了依据止损和止盈平仓,以及在某些市场条件下取消挂单。

构建自动运行的 EA(第 12 部分):自动化(IV)
如果您认为自动化系统很简单,那么您可能并未完全理解创建它们需要什么。 在本文中,我们将谈谈杀死大量智能系统的问题。 不分青红皂白地触发订单是解决这个问题的可能方法。

从市场里选择智能交易系统的正确途径
在本文中,我们将研究购买智能交易系统时应该注意的一些要点。 我们还将寻求提升盈利的方法,从而明智地花钱,并从付出中获取盈利。 此外,读完本文之后,您会发现,即便使用简单免费的产品也有可能赚到钱。

神经网络变得轻松(第八部分):关注机制
在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。

神经网络实验(第 2 部分):智能神经网络优化
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。

从头开始开发智能交易系统(第 20 部分):新订单系统 (III)
我们继续实现新的订单系统。 创建这样的一个系统需要熟练地掌握 MQL5,以及了解 MetaTrader 5 平台的实际工作方式,及其提供的资源。

神经网络变得轻松(第七部分):自适应优化方法
在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。

创建多交易品种、多周期指标
在本文中,我们将研究创建多交易品种、多周期指标的原则。我们还将了解如何从 EA 交易和其他指标中获取此类指标的数据。我们将探讨在 EA 交易和指标中使用多指标的主要功能,并将了解如何通过自定义指标缓冲区绘制它们。

突破结构(BoS)交易策略分步指南
基于结构突破(Break of Structure, BoS)策略的自动化交易算法开发综合指南在MQL5中创建交易顾问并在MetaTrader 5中进行测试的全方位详解——从分析价格支撑与阻力到风险管理


DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合
鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。

一张图表上的多个指标(第 05 部分):将 MetaTrader 5 转变为 RAD 系统(I)
有很多人不知道如何编程,但他们很有创造力,亦有杰出的想法。 然而,由于缺乏编程知识,他们无法实现这些想法。 我们一起看看如何利用 MetaTrader 5 平台本身创建图表交易,就如同它是一个 IDE。

MetaTrader 中的多机器人:从单图表中启动多个机器人
在本文中,我将研究一个简单的模板,用来创建通用的 MetaTrader 机器人,该机器人可以在多个图表上使用,同时仅附加到一个图表,无需在每个单独的图表上为每个机器人实例进行配置。


MQL5 Cookbook: 减少过度配合的影响以及处理报价缺失
无论您使用何种交易策略,总会有一个问题:怎样选择参数以保证未来的利润。本文提供了一个EA交易的实例,使您可以同时优化多个交易品种的参数,这种方法是未了减少参数的过度配合以及处理在研究中来自单个交易品种的数据不足的问题。