交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
在 MQL5 中创建交易管理面板(第九部分):代码组织(二):模块化
在本次讨论中,我们进一步将 MQL5 程序分解为更小、更易于管理的模块。然后,这些模块化组件将被集成到主程序中,从而增强其组织性和可维护性。这种方法简化了我们主程序的结构,并使各个组件可以在其他EA和指标的开发中复用。通过采用这种模块化设计,我们为未来的增强功能创建了坚实的基础,这将使我们的项目和更广泛的开发者社区都受益。
因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例
我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。
让手动回测变得简单:为MQL5策略测试器构建自定义工具包
在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法
在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
创建MQL5交易管理员面板(第九部分):代码组织(1)
这次将深入探讨处理大型代码库时遇到的挑战。我们将探索在MQL5中进行代码组织的最佳实践,并采用一种实用方法来提升我们交易管理面板源代码的可读性和可扩展性。此外,我们致力于开发可复用的代码组件,这些组件有可能为其他开发者在其算法开发过程中带来益处。请继续阅读并参与讨论。
在MQL5中创建交易管理面板(第九部分):代码组织(5):分析面板(AnalyticsPanel)类
在本文中,我们将探讨如何获取实时市场数据和交易账户信息,执行各种计算,并将结果展示在自定义面板上。为此,我们将深入开发一个分析面板(AnalyticsPanel)类,该类封装了所有这些功能,包括面板创建功能。这项工作是我们正在进行的新建管理面板智能交易系统(EA)扩展工作的一部分,旨在运用模块化设计原则和代码组织的最佳实践来引入高级功能。
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块
欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。