Find us on Twitter!
Join our fan page
写文章
我们将支付您200 USD!
下载MetaTrader 5并自动交易

MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
在类中包装 ONNX 模型

在类中包装 ONNX 模型

面向对象编程可以创建更紧凑、易于阅读和修改的代码。 在此,我们将会看到三个 ONNX 模型的示例。
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
神经网络实验(第 4 部分):模板

神经网络实验(第 4 部分):模板

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。
preview
神经网络变得轻松(第三十六部分):关系强化学习

神经网络变得轻松(第三十六部分):关系强化学习

在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。
preview
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。
preview
神经网络实验(第 3 部分):实际应用

神经网络实验(第 3 部分):实际应用

在本系列文章中,我会采用实验和非标准方法来开发一个可盈利的交易系统,并检查神经网络是否对交易者有任何帮助。 若在交易中运用神经网络,MetaTrader 5 则可作为近乎自给自足的工具。
preview
构建自动运行的 EA(第 09 部分):自动化(II)

构建自动运行的 EA(第 09 部分):自动化(II)

如果您无法控制其调度表,则自动化就意味着毫无意义。 没有工人能够一天 24 小时高效工作。 然而,许多人认为自动化系统理所当然地每天 24 小时运行。 但为 EA 设置工作时间范围总是有好处的。 在本文中,我们将研究如何正确设置这样的时间范围。
preview
构建自动运行的 EA(第 09 部分):自动化(I)

构建自动运行的 EA(第 09 部分):自动化(I)

尽管创建自动 EA 并非一项非常困难的任务,但在缺乏必要知识的情况下可能会犯许多错误。 在本文中,我们将研究如何构建初级自动化,其中包括创建一个触发器来激活盈亏平衡和尾随停止价位。
preview
神经网络变得轻松(第三十五部分):内在好奇心模块

神经网络变得轻松(第三十五部分):内在好奇心模块

我们继续研究强化学习算法。 到目前为止,我们所研究的所有算法都需要创建一个奖励政策,从而令代理者能够每次从一个系统状态过渡到另一个系统状态的转换中估算其每个动作。 然而,这种方式人为因素相当大。 在实践中,动作和奖励之间存在一些时间滞后。 在本文中,我们将领略一种模型训练算法,该算法可以操控从动作到奖励的各种时间延迟。
preview
神经网络变得轻松(第三十四部分):全部参数化的分位数函数

神经网络变得轻松(第三十四部分):全部参数化的分位数函数

我们继续研究分布式 Q-学习算法。 在之前的文章中,我们研究了分布式和分位数 Q-学习算法。 在第一种算法当中,我们训练了给定数值范围的概率。 在第二种算法中,我们用给定的概率训练了范围。 在这两个发行版中,我们采用了一个先验分布知识,并训练了另一个。 在本文中,我们将研究一种算法,其允许模型针对两种分布进行训练。
preview
非线性指标

非线性指标

在本文中,我将尝试研究一些构建非线性指标的方法,并探索其在交易中的用处。 MetaTrader 交易平台中有相当多的指标采用非线性方式。
preview
构建自动运行的 EA(第 03 部分):新函数

构建自动运行的 EA(第 03 部分):新函数

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 在上一篇文章中,我们已启动开发一个在自动化 EA 中使用的订单系统。 然而,我们只创建了一个必要的函数。
preview
构建自动运行的 EA(第 02 部分):开始编码

构建自动运行的 EA(第 02 部分):开始编码

今天,我们将看到如何创建一个在自动模式下简单安全地工作的智能系统。 在上一篇文章中,我们讨论了任何人在继续创建自动交易的智能系统之前需要了解的第一步。 我们首先研究了概念和结构。
preview
帧分析器(Frames Analyzer)工具带来的时间片交易魔法

帧分析器(Frames Analyzer)工具带来的时间片交易魔法

什么是帧分析器(Frames Analyzer)? 这是适用于任意智能系统的一个插件模块,在策略测试器中、以及测试器之外进行参数优化期间,该工具在参数优化完成后立即读取测试创建的 MQD 文件、或数据库,并分析优化帧数据。 您能够与拥有帧分析器工具的其他用户共享这些优化结果,从而共同讨论结果。