MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
preview
在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。
preview
MQL5 中的范畴论 (第 12 部分):秩序(Orders)

MQL5 中的范畴论 (第 12 部分):秩序(Orders)

本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
preview
交易中的神经网络:将全局信息注入独立通道(InjectTST)

交易中的神经网络:将全局信息注入独立通道(InjectTST)

大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。
preview
交易中的神经网络:统一轨迹生成模型(UniTraj)

交易中的神经网络:统一轨迹生成模型(UniTraj)

理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。
preview
如何在MQL5的EA中实现自优化

如何在MQL5的EA中实现自优化

MQL5中EA自优化的分步指南。我们将涵盖稳健的优化逻辑、参数选择的最佳实践,以及如何通过回测重构策略。此外,还将讨论诸如分步优化等高级方法,以增强您的交易方法。
preview
交易中的神经网络:使用语言模型进行时间序列预测

交易中的神经网络:使用语言模型进行时间序列预测

我们继续研究时间序列预测模型。在本文中,我们领略一种建立在预训练语言模型基础上的复杂算法。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
为智能系统制定品质因数

为智能系统制定品质因数

在本文中,我们将见识到如何制定一个品质得分,并由您的智能系统从策略测试器返回。 我们将查看两种著名的计算方法 — Van Tharp 和 Sunny Harris。
preview
神经网络变得简单(第 85 部分):多变元时间序列预测

神经网络变得简单(第 85 部分):多变元时间序列预测

在本文中,我愿向您介绍一种新的复杂时间序列预测方法,它和谐地结合了线性模型和转换器的优点。
preview
如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

如何使用MQL5的控件类创建交互式仪表板/面板(第一部分):设置面板

在本文中,我们将使用MQL5的控件类创建一个交互式交易仪表板,旨在简化交易操作。该面板包含标题、用于交易、平仓和信息的导航按钮,以及用于执行交易和管理仓位的专用操作按钮。到文章结束时,你将拥有一个基础面板,为未来的扩展做好准备。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

神经网络变得简单(第 57 部分):随机边际扮演者-评论者(SMAC)

在此,我将研究相当新颖的随机边际扮演者-评论者(SMAC)算法,该算法允许在熵值最大化的框架内构建潜在变量政策。
preview
交易中的神经网络:时空神经网络(STNN)

交易中的神经网络:时空神经网络(STNN)

在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
preview
在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。
preview
MQL5 中的范畴论 (第 11 部分):图论

MQL5 中的范畴论 (第 11 部分):图论

本文是以 MQL5 实现范畴论系列的续篇。于此,我们验证在开发交易系统的平仓策略时,图论如何与幺半群和其它数据结构集成。
preview
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。
preview
创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
preview
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
preview
交易中的神经网络:用于时间序列预测的轻量级模型

交易中的神经网络:用于时间序列预测的轻量级模型

轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。
preview
MetaTrader 中的 Multibot(第二部分):改进的动态模板

MetaTrader 中的 Multibot(第二部分):改进的动态模板

在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。
preview
一个基于新指标和条件长短期记忆网络(LSTM)的实例

一个基于新指标和条件长短期记忆网络(LSTM)的实例

本文探讨了一种用于自动化交易的EA的开发,该EA结合了技术分析和深度学习预测。
preview
数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号

数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号

在瞬息万变的金融市场中,从噪音中分离出有意义的信号对于成功交易至关重要。通过采用复杂的神经网络架构,利用自动编码器发掘市场数据中的隐藏模式,将嘈杂的输入转化为可操作的类型。本文探讨了自动编码器如何改变交易实践,为交易者提供了一个强大的工具,以改善决策制定,并在当今瞬息万变的市场中获得竞争优势。
preview
创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

在本文中,我们创建一个 MQL5 EA 交易,将图表截图编码为图像数据并通过 HTTP 请求将其发送到 Telegram 聊天。通过集成图片编码和传输,我们直接在 Telegram 内通过可视化交易洞察增强了现有的 MQL5-Telegram 系统。
preview
交易中的神经网络:TEMPO 方法的实施结果

交易中的神经网络:TEMPO 方法的实施结果

我们继续领略 TEMPO 方法。在本文中,我们将评估所提议方法在真实历史数据上的真实有效性。
preview
重塑经典策略(第三部分):预测新高与新低

重塑经典策略(第三部分):预测新高与新低

在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。
preview
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
preview
结合基本面和技术分析策略在MQL5中的实现(适合初学者)

结合基本面和技术分析策略在MQL5中的实现(适合初学者)

在本文中,我们将讨论如何将趋势跟踪和基本面原则无缝整合到一个EA中,以构建一个更加稳健的交易策略。本文将展示任何人都可以轻松上手,使用MQL5构建定制化交易算法的过程。
preview
在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在本文的讨论中,我们将逐步扩展现有的对话框库,以纳入主题管理逻辑。此外,我们将把主题切换方法整合到管理员面板项目中使用的 CDialog、CEdit 和 CButton 类中。继续阅读,获取更多深入的了解。
preview
在MQL5中创建交易管理员面板(第四部分):登录安全层

在MQL5中创建交易管理员面板(第四部分):登录安全层

想象一下,一个恶意入侵者潜入了交易管理员房间,获取了用于向全球数百万交易者传递有价值信息的计算机和管理员面板的访问权限。这种入侵可能导致灾难性后果,例如未经授权发送误导性信息或随意点击按钮触发意外操作。在本次讨论中,我们将探究MQL5中的安全措施以及在管理员面板中实施的新安全功能,以防范这些威胁。通过增强安全协议,我们旨在保护通信渠道并维护全球交易社区的可信度。在本文的讨论中了解更多见解。
preview
创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应

创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应

在本文中,我们创建了几个类来促进 MQL5 和 Telegram 之间的实时通信。我们专注于从 Telegram 获取命令,解码和解释它们,并发送适当的响应。最后,我们确保这些交互在交易环境中得到有效测试和运行。
preview
神经网络变得简单(第 94 部分):优化输入序列

神经网络变得简单(第 94 部分):优化输入序列

在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
preview
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
preview
神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

在本文中,我们继续实现 ATFNet 模型的方式,其在时间序列预测内可自适应地结合 2 个模块(频域和时域)的结果。
preview
神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。
preview
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。
preview
开发多币种 EA 交易 (第 5 部分):可变仓位大小

开发多币种 EA 交易 (第 5 部分):可变仓位大小

在前面的部分中,我们正在开发的智能交易系统 (EA) 只能使用固定的仓位大小进行交易。这对于测试来说是可以接受的,但在真实账户交易时并不建议这样做。让我们能够使用可变的仓位大小进行交易。
preview
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
preview
在 MQL5 中创建每日回撤限制器 EA

在 MQL5 中创建每日回撤限制器 EA

本文从详细的角度讨论了如何基于交易算法实现 EA 交易系统的创建。这有助于在 MQL5 中实现系统自动化,并控制每日回撤。
preview
神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

在本文中,我们将领略一个有趣的算法,它是在监督和强化学习方法的交叉点上构建的。