MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

如何使用 Controls 类创建交互式 MQL5 仪表盘/面板(第 2 部分):添加按钮响应。

在本文中,我们将聚焦于实现按钮的响应,把静态的 MQL5 面板转变为一个交互式工具。我们将探讨如何自动化 GUI 组件的功能,确保它们能够恰当地响应用户的点击操作。最终,我们将建立一个动态界面,提升交互性和交易体验。
preview
让新闻交易轻松上手(第五部分):执行交易(2)

让新闻交易轻松上手(第五部分):执行交易(2)

本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。
preview
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
preview
神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

神经网络变得简单(第 93 部分):频域和时域中的自适应预测(终篇)

在本文中,我们继续实现 ATFNet 模型的方式,其在时间序列预测内可自适应地结合 2 个模块(频域和时域)的结果。
preview
价格行为分析工具包开发(第二部分):分析注释脚本

价格行为分析工具包开发(第二部分):分析注释脚本

秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
preview
基于三维反转形态的算法交易

基于三维反转形态的算法交易

在三维K线上探索自动化交易的新世界。基于多维价格K线的交易机器人是什么样的?三维K线中的“黄色”簇群能否预测趋势反转?多维交易是什么样的?
preview
交易中的神经网络:点云的层次化特征学习

交易中的神经网络:点云的层次化特征学习

我们继续研究从点云提取特征的算法。在本文中,我们将领略提升 PointNet 方法效率的机制。
preview
MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA

MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA

在本文中,我们将在 MQL5 中构建一个使用动态仓位缩放的网格交易EA。我们将涵盖策略设计、代码实现和回测过程。最后,我们将分享用于优化该自动化交易系统的关键方案和最佳实践。
preview
神经网络变得简单(第 74 部分):自适应轨迹预测

神经网络变得简单(第 74 部分):自适应轨迹预测

本文介绍了一种相当有效的多个体轨迹预测方法,其可适配各种环境条件。
preview
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
preview
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
preview
在 MQL5 中创建交易管理员面板(第五部分):双因素认证(2FA)

在 MQL5 中创建交易管理员面板(第五部分):双因素认证(2FA)

今天,我们将讨论如何增强当前正在开发的交易管理员面板的安全性。我们将探讨如何在新的安全策略中实施 MQL5,并将 Telegram API 集成到双因素认证(2FA)中。本次讨论将提供有关 MQL5 在加强安全措施方面的应用的宝贵见解。此外,我们还将研究 MathRand 函数,重点关注其功能以及如何在我们构建的安全框架中有效利用它。继续阅读以了解更多信息!
preview
重构经典策略(第五部分):基于USDZAR的多品种分析

重构经典策略(第五部分):基于USDZAR的多品种分析

在本系列文章中,我们重新审视经典策略,看看是否可以使用人工智能来改进这些策略。在今天的文章中,我们将研究一种使用一篮子具有相关性的金融产品来进行多品种分析的流行策略,我们将重点关注货币对 USDZAR。
preview
交易中的神经网络:节点-自适应图形表征(NAFS)

交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
preview
交易中的神经网络:层次化向量变换器(HiVT)

交易中的神经网络:层次化向量变换器(HiVT)

我们邀请您来领略层次化矢量转换器(HiVT)方法,其专为快速、准确地预测多模态时间序列而开发。
preview
价格行为分析工具包开发(第十四部分):抛物线转向与反转工具

价格行为分析工具包开发(第十四部分):抛物线转向与反转工具

采用技术指标分析价格行为是一种强有力的方法。这些指标通常突出显示反转和回调的关键水平,为揭示市场动态提供了宝贵的信息。在本文中,我们演示了如何开发一个使用抛物线转向(Parabolic SAR)指标生成信号的自动化交易程序。
preview
神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。
preview
在MQL5中创建交易管理员面板(第八部分):分析面板

在MQL5中创建交易管理员面板(第八部分):分析面板

今天,我们将深入探讨如何在管理员面板EA的一个集成专用窗口中,加入有用的交易指标。本次讨论的重点是使用MQL5实现一个分析面板,并强调其所提供数据对交易管理员的价值。其影响主要体现在教学意义上,因为整个开发过程能提炼出宝贵的经验教训,使新手和经验丰富的开发者都能从中受益。此功能展示了我们开发的系列工具在为交易经理配备先进软件工具方面所提供的无限可能。此外,作为对交易管理员面板能力的持续扩展,我们将探讨PieChart(饼图)和ChartCanvas(图表画布)类的实现。
preview
使用MQL5经济日历进行交易(第五部分):添加响应式控件和过滤按钮的增强型仪表盘

使用MQL5经济日历进行交易(第五部分):添加响应式控件和过滤按钮的增强型仪表盘

在本文中,我们创建了用于货币对过滤、重要性级别过滤、时间过滤以及取消选项的按钮,以改进仪表盘的控制功能。通过编程让这些按钮能够动态响应用户操作,实现无缝交互。我们还对其行为进行了自动化处理,以便在仪表盘上实时反映变化。这样就提升了面板的整体功能性、灵活性和响应速度。
preview
神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型

神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型

在探索各种模型架构设计时,我们往往对模型训练过程的关注投入不足。在本文中,我旨在弥补这一差距。
preview
交易中的神经网络:点云分析(PointNet)

交易中的神经网络:点云分析(PointNet)

直接分析点云避免了不必要的数据增长,并改进了模型在分类和任务分段时的性能。如此方式对于原始数据中的扰动展现出高性能和稳健性。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
基于套接字(Sockets)的Twitter情绪分析

基于套接字(Sockets)的Twitter情绪分析

这种创新的交易机器人将 MetaTrader 5 与 Python 结合,利用实时社交媒体情绪分析为自动化交易决策提供支持。通过分析与特定金融工具相关的 Twitter 情绪,该机器人将社交媒体趋势转化为可操作的交易信号。它采用客户端-服务器架构,并通过套接字通信实现无缝交互,将 MT5 的交易能力与 Python 的数据处理能力完美结合。该系统展示了将量化金融与自然语言处理相结合的潜力,提供了一种利用替代数据源的尖端算法交易方法。尽管显示出巨大潜力,但该机器人也突显了未来改进的方向,包括采用更先进的情绪分析技术以及改进风险管理策略。
preview
交易中的神经网络:点云变换器(Pointformer)

交易中的神经网络:点云变换器(Pointformer)

在本文中,我们将说道有关使用注意力方法解决点云中物体检测问题的算法。点云中的物体检测对于很多现世应用都很重要。
preview
让新闻交易轻松上手(第二部分):风险管理

让新闻交易轻松上手(第二部分):风险管理

在本文,我们将把继承引入到我们之前的代码和新代码中。我们将引入一种新的数据库设计以提高效率。此外,还将创建一个风险管理类来处理容量计算。
preview
精通 MQL5 文件操作:从基础 I/O 到构建自定义 CSV 读取器

精通 MQL5 文件操作:从基础 I/O 到构建自定义 CSV 读取器

本文聚焦于 MQL5 文件处理的核心技术,涵盖交易日志、CSV 处理以及外部数据集成。它既提供概念性理解,也包含实用的编程指导。读者将逐步学习如何构建一个自定义的 CSV 导入器类,从而掌握适用于实际应用的实用技能。
preview
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
preview
神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

在本文中,我们将领略一个有趣的算法,它是在监督和强化学习方法的交叉点上构建的。
preview
在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

本文探讨了如何优化 RSI 的水平和周期,以获得更好的交易信号。我们介绍了估算最优 RSI 值的方法,并使用网格搜索和统计模型来自动选择周期。最后,我们在 MQL5 中实现了该解决方案,同时利用 Python 进行分析。我们的方法力求务实和直接,旨在以简单的方式帮助您解决潜在复杂的问题。
preview
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。
preview
在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)

在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)

在本文中,我们将专注于使用MQL5为交易管理员面板的图形用户界面(GUI)进行视觉样式设计与优化。我们将探讨MQL5中可用的各种技术和功能,这些技术和功能允许对界面进行定制和优化,确保它既能满足交易者的需求,又能保持吸引人的外观。
preview
事后交易分析:在策略测试器中选择尾随停止和新的止损位

事后交易分析:在策略测试器中选择尾随停止和新的止损位

我们继续在策略测试器中分析已完结成交的主题,以便提升交易品质。我们看看使用不同的尾随停止如何改变我们现有的交易结果。
preview
交易中的神经网络:时间序列的分段线性表示

交易中的神经网络:时间序列的分段线性表示

这篇文章与我以前发表的有些不同。在本文中,我们将谈谈时间序列的另类表示。时间序列的分段线性表示是一种利用涵盖小间隔的线性函数逼近时间序列的方法。
preview
外汇投资组合优化:风险价值理论与马科维茨理论的融合

外汇投资组合优化:风险价值理论与马科维茨理论的融合

外汇市场中的投资组合交易是如何运作的?我们如何将用于优化投资组合权重的马科维茨投资组合理论与用于优化投资组合风险的VaR模型结合起来?我们基于投资组合理论创建一个EA,一方面,我们将获得低风险;另一方面,获得可接受的长期盈利能力。
preview
神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗

基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。
preview
使用MQL5经济日历进行交易(第六部分):利用新闻事件分析和倒计时器实现交易入场自动化

使用MQL5经济日历进行交易(第六部分):利用新闻事件分析和倒计时器实现交易入场自动化

在本文中,我们将借助MQL5经济日历实现交易入场自动化,具体方法是应用用户自定义的筛选条件和时差偏移量来识别符合条件的新闻事件。我们通过对比预测值和前值,来确定是开立买入(BUY)单还是卖出(SELL)订单。动态倒计时器会显示距离新闻发布剩余的时间,并且在完成一笔交易后自动重置。
preview
交易中的神经网络:对比形态变换器

交易中的神经网络:对比形态变换器

对比变换器在设计上基于单根烛条水平和整个形态来分析行情。这有助于提升行情趋势建模的品质。甚至,运用对比学习来统调烛条和形态的表示、促进自我调节,并提升预测的准确性。
preview
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)

在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
preview
神经网络变得简单(第 87 部分):时间序列补片化

神经网络变得简单(第 87 部分):时间序列补片化

预测在时间序列分析中扮演重要角色。在新文章中,我们将谈谈时间序列补片化的益处。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。