MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
创建一个基于日波动区间突破策略的 MQL5 EA

创建一个基于日波动区间突破策略的 MQL5 EA

在本文中,我们将创建一个基于日波动区间突破策略的 MQL5 EA。我们阐述该策略的关键概念,设计EA框架蓝图,并在 MQL5 语言中实现突破策略逻辑。最后,我们将探讨用于回测和优化EA的技术,以最大限度地提高其有效性。
preview
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。 这种方法确保了自动化交易中的精确性和适应性。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
交易中的神经网络:使用语言模型进行时间序列预测

交易中的神经网络:使用语言模型进行时间序列预测

我们继续研究时间序列预测模型。在本文中,我们领略一种建立在预训练语言模型基础上的复杂算法。
preview
重塑经典策略(第三部分):预测新高与新低

重塑经典策略(第三部分):预测新高与新低

在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。
preview
使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。
preview
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本

支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
preview
结合基本面和技术分析策略在MQL5中的实现(适合初学者)

结合基本面和技术分析策略在MQL5中的实现(适合初学者)

在本文中,我们将讨论如何将趋势跟踪和基本面原则无缝整合到一个EA中,以构建一个更加稳健的交易策略。本文将展示任何人都可以轻松上手,使用MQL5构建定制化交易算法的过程。
preview
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。
preview
在MQL5中创建交易管理员面板(第四部分):登录安全层

在MQL5中创建交易管理员面板(第四部分):登录安全层

想象一下,一个恶意入侵者潜入了交易管理员房间,获取了用于向全球数百万交易者传递有价值信息的计算机和管理员面板的访问权限。这种入侵可能导致灾难性后果,例如未经授权发送误导性信息或随意点击按钮触发意外操作。在本次讨论中,我们将探究MQL5中的安全措施以及在管理员面板中实施的新安全功能,以防范这些威胁。通过增强安全协议,我们旨在保护通信渠道并维护全球交易社区的可信度。在本文的讨论中了解更多见解。
preview
神经网络变得简单(第 85 部分):多变元时间序列预测

神经网络变得简单(第 85 部分):多变元时间序列预测

在本文中,我愿向您介绍一种新的复杂时间序列预测方法,它和谐地结合了线性模型和转换器的优点。
preview
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。
preview
让新闻交易轻松上手(第六部分):执行交易(3)

让新闻交易轻松上手(第六部分):执行交易(3)

在本文中,将实现基于新闻事件ID对单个新闻事件进行新闻筛选。此外,还将对先前的SQL查询进行改进,以提供更多信息或减少查询运行时间。另外,还将使前几篇文章中构建的代码具备实际功能。
preview
MQL5 中的范畴论 (第 12 部分):秩序(Orders)

MQL5 中的范畴论 (第 12 部分):秩序(Orders)

本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
preview
MetaTrader 中的 Multibot(第二部分):改进的动态模板

MetaTrader 中的 Multibot(第二部分):改进的动态模板

在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。
preview
创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

在本文中,我们创建一个 MQL5 EA 交易,将图表截图编码为图像数据并通过 HTTP 请求将其发送到 Telegram 聊天。通过集成图片编码和传输,我们直接在 Telegram 内通过可视化交易洞察增强了现有的 MQL5-Telegram 系统。
preview
MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库

MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库

了解如何在 MQL5 代码或项目中开发和实现全面的挂单 EX5库。本文将向您展示如何创建一个全面的挂单管理 EX5 库,并通过构建交易面板或图形用户界面(GUI)来指导您导入和实现它。EA 交易订单面板将允许用户直接从图表窗口上的图形界面打开、监控和删除与指定幻数相关的挂单。
preview
交易中的多项式模型

交易中的多项式模型

本文将介绍正交多项式。正交多项式的应用,可以成为更准确、更有效地分析市场信息的基础,从而帮助交易者做出更明智的决策。
preview
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统

MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统

在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
preview
神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。
preview
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类

本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
preview
交易中的神经网络:多智代自适应模型(MASA)

交易中的神经网络:多智代自适应模型(MASA)

我邀您领略多智代自适应(MASA)框架,其结合了强化学习和自适应策略,在动荡市场条件下提供盈利能力、及风险管理之间的和谐均衡。
preview
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

MQL5自动化交易策略(第四部分):构建多层级区域恢复系统

本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
preview
MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA

MQL5中的自动化交易策略(第七部分):构建具备仓位动态调整功能的网格交易EA

在本文中,我们将在 MQL5 中构建一个使用动态仓位缩放的网格交易EA。我们将涵盖策略设计、代码实现和回测过程。最后,我们将分享用于优化该自动化交易系统的关键方案和最佳实践。
preview
价格行为分析工具包开发(第十四部分):抛物线转向与反转工具

价格行为分析工具包开发(第十四部分):抛物线转向与反转工具

采用技术指标分析价格行为是一种强有力的方法。这些指标通常突出显示反转和回调的关键水平,为揭示市场动态提供了宝贵的信息。在本文中,我们演示了如何开发一个使用抛物线转向(Parabolic SAR)指标生成信号的自动化交易程序。
preview
交易中的神经网络:时空神经网络(STNN)

交易中的神经网络:时空神经网络(STNN)

在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
preview
交易中的神经网络:TEMPO 方法的实施结果

交易中的神经网络:TEMPO 方法的实施结果

我们继续领略 TEMPO 方法。在本文中,我们将评估所提议方法在真实历史数据上的真实有效性。
preview
为智能系统制定品质因数

为智能系统制定品质因数

在本文中,我们将见识到如何制定一个品质得分,并由您的智能系统从策略测试器返回。 我们将查看两种著名的计算方法 — Van Tharp 和 Sunny Harris。
preview
创建动态多货币对EA(第二部分):投资组合多元化与优化

创建动态多货币对EA(第二部分):投资组合多元化与优化

投资组合多元化与优化旨在将投资有策略地分散配置于多种资产之上,在最小化风险的同时,依据风险调整后的绩效指标挑选出最理想的资产组合,从而实现回报最大化。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
创建动态多货币对EA(第1部分):货币正相关性与负相关性

创建动态多货币对EA(第1部分):货币正相关性与负相关性

动态多货币对EA利用正负相关性来优化EA的交易表现。通过分析实时市场数据,它识别并利用货币对之间的相关性。
preview
MQL5 中的范畴论 (第 11 部分):图论

MQL5 中的范畴论 (第 11 部分):图论

本文是以 MQL5 实现范畴论系列的续篇。于此,我们验证在开发交易系统的平仓策略时,图论如何与幺半群和其它数据结构集成。
preview
价格行为分析工具包开发系列(第4部分):分析预测型EA

价格行为分析工具包开发系列(第4部分):分析预测型EA

我们不再局限于仅在图表上查看分析后的指标,而是将视野拓展至更广阔的范畴,其中包括与Telegram的集成。这一增强功能使得重要结果能够通过Telegram应用程序直接发送至您的移动设备。请随我们一同在本篇文章中探索这一过程。
preview
交易中的神经网络:运用形态变换器进行市场分析

交易中的神经网络:运用形态变换器进行市场分析

当我们用模型分析市场形势时,我们主要关注蜡烛条。然而,人们早就知道烛条形态能有助于预测未来的价格走势。在本文中,我们将领略一种能将这两种方法集成的方式。
preview
神经网络变得简单(第 94 部分):优化输入序列

神经网络变得简单(第 94 部分):优化输入序列

在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
preview
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)

在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
preview
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
preview
神经网络变得简单(第 84 部分):可逆归一化(RevIN)

神经网络变得简单(第 84 部分):可逆归一化(RevIN)

我们已经知晓,输入数据的预处理对于模型训练的稳定性扮演重要角色。为了在线处理 “原始” 输入数据,我们往往会用到批量归一化层。但有时我们需要一个逆过程。在本文中,我们将讨论解决该问题的可能方式之一。