基于套接字(Sockets)的Twitter情绪分析
这种创新的交易机器人将 MetaTrader 5 与 Python 结合,利用实时社交媒体情绪分析为自动化交易决策提供支持。通过分析与特定金融工具相关的 Twitter 情绪,该机器人将社交媒体趋势转化为可操作的交易信号。它采用客户端-服务器架构,并通过套接字通信实现无缝交互,将 MT5 的交易能力与 Python 的数据处理能力完美结合。该系统展示了将量化金融与自然语言处理相结合的潜力,提供了一种利用替代数据源的尖端算法交易方法。尽管显示出巨大潜力,但该机器人也突显了未来改进的方向,包括采用更先进的情绪分析技术以及改进风险管理策略。
MQL5中交易策略的自动化实现(第六部分):掌握智能资金交易中的订单块(Order Block)检测技巧
在本文中,我们将运用纯粹的价格行为分析方法,在MQL5平台上实现订单块的自动化检测。我们将界定订单块的定义,实现其检测功能,并集成自动化交易执行系统。最后,我们通过回测来评估该策略的表现。
用于MetaTrader 5的WebSocket:借助Windows API实现异步客户端连接
本文详细介绍了开发一款自定义动态链接库的过程,该库旨在为MetaTrader程序提供异步WebSocket客户端连接功能。
神经网络变得简单(第 72 部分):噪声环境下预测轨迹
预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
交易中的神经网络:使用小波变换和多任务注意力的模型(终篇)
在上一篇文章中,我们探索了理论基础,并开始实现多任务-Stockformer 框架的方式,其结合了小波变换和自注意力多任务模型。我们继续实现该框架的算法,并评估其在真实历史数据上的有效性。
用于MetaTrader 5的WebSocket:借助Windows API实现异步客户端连接
本文详细介绍了开发一款自定义动态链接库的过程,该库旨在为MetaTrader程序提供异步WebSocket客户端连接功能。
交易中的神经网络:搭配预测编码的混合交易框架(终篇)
我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。
外汇投资组合优化:风险价值理论与马科维茨理论的融合
外汇市场中的投资组合交易是如何运作的?我们如何将用于优化投资组合权重的马科维茨投资组合理论与用于优化投资组合风险的VaR模型结合起来?我们基于投资组合理论创建一个EA,一方面,我们将获得低风险;另一方面,获得可接受的长期盈利能力。
在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)
在本文中,我们将专注于使用MQL5为交易管理员面板的图形用户界面(GUI)进行视觉样式设计与优化。我们将探讨MQL5中可用的各种技术和功能,这些技术和功能允许对界面进行定制和优化,确保它既能满足交易者的需求,又能保持吸引人的外观。
交易中的神经网络:具有相对编码的变换器
自我监督学习是分析大量无标签数据的有效方法。通过令模型适应金融市场的特定特征来提供效率,这有助于提升传统方法的有效性。本文讲述了一种替代的注意力机制,它参考输入之间的相对依赖关系。
交易中的神经网络:多智代自适应模型(终篇)
在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。
交易中的神经网络:广义 3D 引用表达分段
在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
神经网络变得简单(第 81 部分):上下文引导运动分析(CCMR)
在以前的工作中,我们总是评估环境的当前状态。与此同时,指标变化的动态始终保持在“幕后”。在本文中,我打算向您介绍一种算法,其允许您评估 2 个连续环境状态数据之间的直接变化。
MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单
MQL5 框架通过统一的执行管理器和性能分析器,将机构级执行算法(TWAP、VWAP、冰山订单)带给散户交易者,从而实现更流畅、更精确的订单切片和分析。
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)
为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
交易中的神经网络:双曲型潜在扩散模型(终篇)
正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。
价格行为分析工具包开发(第十六部分):引入四分之一理论(2)—— 侵入探测器智能交易系统(EA)
在前一篇文章中,我们介绍了一个名为“四分位绘图脚本”的简单脚本。现在,我们在此基础上更进一步,创建一个用于监控的智能交易系统(EA),以跟踪这些四分位水平,并对这些价位可能引发的市场反应进行监督。请随我们一同探索在本篇文章中开发区域检测工具的过程。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整
成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性
在本文中,我们将现有的用于从 MQL5 向 Telegram 发送消息和截图的代码重构为可重复使用的模块化函数。这将简化流程,实现跨多个实例的更高效执行和更轻松的代码管理。
价格行为分析工具包开发(第九部分):外部数据流
本文将利用专为高级分析而设计的外部库,探索一个全新的分析维度。这些库(如pandas)提供了强大的工具,用于处理和解读复杂数据,使交易者能够更深入地洞察市场动态。通过整合此类技术,我们能够整合原始数据与可执行策略之间的差距。加入我们,共同为这一创新方法奠定基础,并释放技术与交易专业知识相结合的潜力。
交易中的神经网络:免掩码注意力方式预测价格走势
在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
交易中的神经网络:受控分段(终章)
我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器
在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
交易中的神经网络:超点变换器(SPFormer)
在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
让新闻交易轻松上手(第4部分):性能增强
本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
交易中的神经网络:降低锐度强化变换器效率(终章)
SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析
在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程