有关使用 MQL5 集成 MetaTrader 5 的文章

icon

交易者遇到的有趣挑战,就是经常需要一个创新的方法。这个类别的特色文章,提供了众多评估、分析和处理价格数据以及交易结果的出乎意料的解决方案。这些文章描述了多种集成方案,包括数据库和 ICQ 连接,OpenCL 的使用 和社群网络,Delphi 和 C# 的使用。

阅读并了解如何使用专门的数学和神经网络包,以及更多。成为一名作家 并与 MQL5 社区成员共享独特思想。

添加一个新的文章
最近 | 最佳
preview
MQL5 中的范畴论 (第 10 部分):幺半群组

MQL5 中的范畴论 (第 10 部分):幺半群组

本文是以 MQL5 实现范畴论系列的延续。 在此,我们将”幺半群-组“视为常规化幺半群集的一种手段,令它们在更广泛的幺半群集和数据类型中更具可比性。
preview
利用 MQL5 的交互式 GUI 改进您的交易图表(第一部分):可移动 GUI(I)

利用 MQL5 的交互式 GUI 改进您的交易图表(第一部分):可移动 GUI(I)

凭借我们的利用 MQL5 创建可移动 GUI 的综合指南,令您的交易策略或实用程序焕发出呈现动态数据的力量。 深入了解图表事件的核心概念,并学习如何在同一图表上设计和实现简单、多个可移动的 GUI。 本文还探讨了往 GUI 上添加元素的过程,从而增强其功能和美观性。
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
如何将 MetaTrader 5 与 PostgreSQL 连接

如何将 MetaTrader 5 与 PostgreSQL 连接

本文讲述了将 MQL5 代码与 Postgres 数据库连接的四种方法,并提供了一个分步教程,指导如何使用 Windows 子系统 Linux (WSL) 为 REST API 设置一个开发环境。 所提供 API 的演示应用程序,配以插入数据并查询相应数据表的 MQL5 代码,以及消化此数据的演示智能系统。
preview
MQL5 中的范畴论 (第 5 部分):均衡器

MQL5 中的范畴论 (第 5 部分):均衡器

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
preview
种群优化算法:猴子算法(MA)

种群优化算法:猴子算法(MA)

在本文中,我将研究猴子优化算法(MA)。 这些动物克服困难障碍,并到达最难以接近的树顶的能力构成了 MA 算法思想的基础。
preview
开发回放系统 — 市场模拟(第 01 部分):首次实验(I)

开发回放系统 — 市场模拟(第 01 部分):首次实验(I)

如何创建一个系统,让我们在闭市后也能研究市场,甚至模拟市场情况? 在此,我们将开始一系列新的文章,在其中我们将应对这个主题。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
种群优化算法:和弦搜索(HS)

种群优化算法:和弦搜索(HS)

在本文中,我将研究和测试最强大的优化算法 — 和弦搜索(HS),其灵感来自寻找完美声音和声的过程。 那么现在什么算法在我们的评级中处于领先地位?
preview
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。
preview
种群优化算法:引力搜索算法(GSA)

种群优化算法:引力搜索算法(GSA)

GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。
preview
MQL5 酷宝书 — 宏观经济事件数据库

MQL5 酷宝书 — 宏观经济事件数据库

本文讨论了基于 SQLite 引擎处理数据库的可能性。 形成的 CDatabase 类就是为了方便和有效地运用 OOP 原则。 随后它会参与宏观经济事件数据库的创建和管理。 本文提供了使用 CDatabase 类的多种方法的示例。
preview
种群优化算法:细菌觅食优化(BFO)

种群优化算法:细菌觅食优化(BFO)

大肠杆菌觅食策略激发出科学家创建 BFO 优化算法的灵感。 该算法包含原创思路和有前景的优化方法,值得深入研究。
preview
种群优化算法:入侵杂草优化(IWO)

种群优化算法:入侵杂草优化(IWO)

在各种条件下杂草的惊人生存能力已演化成强大优化算法的思路。 IWO 是以前审阅过的算法中最好的算法之一。
preview
种群优化算法:蝙蝠算法(BA)

种群优化算法:蝙蝠算法(BA)

在本文中,我将研究蝙蝠算法(BA),它在平滑函数上表现出良好的收敛性。
preview
种群优化算法:萤火虫算法(FA)

种群优化算法:萤火虫算法(FA)

在本文中,我将研究萤火虫算法(FA)优化方法。 致谢优化修订,该算法已从局外人变成了评级表上的真正领先者。
preview
MQL5 中的范畴论 (第 1 部分)

MQL5 中的范畴论 (第 1 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。
preview
您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析

您应该知道的 MQL5 向导技术(第 04 部分):线性判别分析

今天的交易者都是哲学家,几乎总是在寻找新的想法,尝试提炼它们,选择修改或丢弃它们:一个探索性的过程,肯定会花费相当的勤奋程度。 这些系列文章将提出 MQL5 向导应该是交易者在此领域努力的中流砥柱。
preview
创建一个行情卷播面板:基本版

创建一个行情卷播面板:基本版

在此,我将展示如何创建价格播报屏幕,它通常在交易所滚动显示报价。 我会只用 MQL5 来做到这一点,无需复杂的外部编程。
preview
神经网络变得轻松(第二十六部分):强化学习

神经网络变得轻松(第二十六部分):强化学习

我们继续研究机器学习方法。 自本文,我们开始另一个大话题,强化学习。 这种方式允许为模型设置某些策略来解决问题。 我们可以预期,强化学习的这种特性将为构建交易策略开辟新的视野。
preview
神经网络变得轻松(第二十五部分):实践迁移学习

神经网络变得轻松(第二十五部分):实践迁移学习

在最晚的两篇文章中,我们开发了一个创建和编辑神经网络模型的工具。 现在是时候通过实践示例来评估迁移学习技术的潜在用途了。
preview
MQL5 中的矩阵和向量操作

MQL5 中的矩阵和向量操作

MQL5 中引入了矩阵和向量,用于实现数学解决方案的高效操作。 新类型提供了内置方法,能够创建接近数学标记符号的简洁易懂的代码。 数组提供了广泛的功能,但在很多情况下,矩阵的效率要高得多。
preview
神经网络变得轻松(第二十四部分):改进迁移学习工具

神经网络变得轻松(第二十四部分):改进迁移学习工具

在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?
群体优化算法
群体优化算法

群体优化算法

这是一篇关于优化算法(OA)分类的介绍性文章。 本文尝试创建一个测试基台(一组函数),用于比较 OA,并可识别所有广为人知的算法中最通用的算法。
preview
神经网络变得轻松(第二十三部分):构建迁移学习工具

神经网络变得轻松(第二十三部分):构建迁移学习工具

在本系列文章中,我们已经不止一次提到了迁移学习。 然而,都只是提及而已。 在本文中,我建议填补这一空白,并仔细研究迁移学习。
preview
神经网络变得轻松(第二十二部分):递归模型的无监督学习

神经网络变得轻松(第二十二部分):递归模型的无监督学习

我们继续研究无监督学习算法。 这次我建议我们讨论自动编码器应用于递归模型训练时的特性。
preview
机器学习和交易中的元模型:交易订单的原始时序

机器学习和交易中的元模型:交易订单的原始时序

机器学习中的元模型:很少或无人为干预的情况下自动创建交易系统 — 模型自行决定何时以及如何进行交易。
preview
从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

在本文中,我们将继续研究如何从 web 获取数据,并在智能系统中使用它。 这次我们将着手开发一个替代系统。
preview
从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。
preview
从头开始开发智能交易系统(第 15 部分):访问 web 上的数据(I)

从头开始开发智能交易系统(第 15 部分):访问 web 上的数据(I)

如何通过 MetaTrader 5 访问在线数据? 互联网上有很多网站,提供海量信息。 您需要知道的是,在哪里查找、以及如何才能最好地利用这些信息。
preview
DirectX 教程(第一部分):绘制第一个三角形

DirectX 教程(第一部分):绘制第一个三角形

这是一篇关于 DirectX 的介绍性文章,介绍了使用 API 进行操作的细节。 它应有助于理解其组件的初始化顺序。 本文包含一个如何编写 MQL5 脚本的示例,该脚本使用 DirectX 渲染一个三角形。
preview
MetaTrader 5 的 WebSocket — 使用 Windows API

MetaTrader 5 的 WebSocket — 使用 Windows API

在本文中,我们将使用 WinHttp.dll 针对 MetaTrader 5 平台创建 WebSocket 客户端程序。 客户端最终将作为一个类实现,并借助 Binary.com 的 WebSocket API 进行测试。
preview
在 MQL5 中使用 AutoIt

在 MQL5 中使用 AutoIt

简述。 在本文中,我们将探索采用 MetraTrader 5 终端里以集成的 MQL5 编写 AutoIt 脚本。 在其中,我们将覆盖如何操纵终端的用户界面来自动完成各种任务,并介绍一个采用 AutoItX 库的类。
preview
多层感知器和反向传播算法(第二部分):利用 Python 实现并与 MQL5 集成

多层感知器和反向传播算法(第二部分):利用 Python 实现并与 MQL5 集成

有一个 Python 程序包可用于开发与 MQL 的集成,它提供了大量机会,例如数据探索、创建和使用机器学习模型。 集成在 MQL5 内置的 Python,能够创建各种解决方案,从简单的线性回归、到深度学习模型。 我们来看看如何设置和准备开发环境,以及如何使用一些机器学习函数库。
preview
来自专业程序员的提示(第一部分):代码存储、调试和编译。 操控项目和日志

来自专业程序员的提示(第一部分):代码存储、调试和编译。 操控项目和日志

这些提示来自专业程序员,涵盖有关方法、技术和辅助工具,能够令编程更轻松。
preview
形态搜索的暴力强推方式(第四部分):最小功能

形态搜索的暴力强推方式(第四部分):最小功能

本文基于上一篇文章中设定的目标,提出了一个改进的暴力强推版本。 我将尝试尽可能广泛地涵盖这个主题,并以该方法获取的设置来运行智能交易系统。 本文还附有一个新的程序版本。
preview
网格和马丁格尔交易系统中的机器学习。 您敢为其打赌吗?

网格和马丁格尔交易系统中的机器学习。 您敢为其打赌吗?

本文介绍了应用于网格和马丁格尔交易的机器学习技术。 令人惊讶的是,这种方法在全球网络中难觅踪迹。 阅读过本文之后,您将能够创建自己的交易机器人。