
深度神经网络 (第 III 部)。样品选择和降维
本文是一系列有关深层神经网络的延续文章。在此, 我们将研究选择样本 (消除噪声), 降低输入数据的维度, 并在数据准备期间将数据集合划分为训练/验证/测试集合, 以便训练神经网络。

使用云存储服务来进行终端之间的数据交换
云技术正在变得越来越流行,现在,我们可以选择付费或者免费的存储服务,有没有可能在交易中使用它们呢?本文提出了一种技术,可以使用云存储服务来进行终端之间的数据交换。

深度神经网络 (第 I 部)。准备数据
本系列文章继续探索深度神经网络 (DNN) 在众多应用领域 (包括交易) 中的运用。在此会探索本主题的新维度, 同时使用实际的实验测试新的方法和思路。本系列的第一篇文章致力于为 DNN 准备数据。

通用EA交易: 访问交易品种的属性 (第8部分)
文章的第八部分包含了 CSymbol 类的描述, 它是一个特别的对象,可以访问任何交易资产。当在 EA 交易中使用时, 这个类提供了很多交易品种的属性,而简化了EA交易的编程,并扩展了它的功能。

基于 MQL5 源代码创建文档
本文研究从所需的标签标记开始自动为 MQL5 代码创建文档。它还提供了如何使用、如何正确配置 Doxygen 软件, 以及如何以不同格式接收结果 (包括 html, HtmlHelp 和 PDF) 的说明。

跨平台的EA交易: 信号
本文讨论了 CSignal 和 CSignals 类,它们将用于创建跨平台的EA交易。它检验了MQL4和MQL5的区别,看它们在评估交易信号时需要怎样特别的数据,这样来确保写出的代码可以兼容两种编译器。

MQL5 酷宝典 - 创建的环形缓存用于快速计算滑动窗口中的指标
在滑动窗口中执行计算时, 环形缓存是排布数据最简单和最有效的方式。本文描述其算法, 并展示它如何简化滑动窗口中的计算, 以令其更有效率。

来自 MQL5 向导的预制专家交易系统运作于 MetaTrader 4 平台中
本文为 MetaTrader 4 提供了简单的 MetaTrader 5 交易环境模拟器。模拟器实现了标准函数库的交易类的移植和调整。结果就是, MetaTrader 5 向导中生成的专家交易系统在 MetaTrader 4 中无需修改即可进行编译并执行。
可视化!类似于 R 语言 "plot (绘图)" 的 MQL5 图形库
在研究交易逻辑时, 图形形式的直观表达是非常重要的。科学界中流行的一些编程语言 (如 R 和 Python) 拥有可视化的特殊 "plot (绘图)" 功能。它能够以直观方式绘制线, 点分布和直方图。在 MQL5 中, 您可以使用 CGraphics 类完成相同的操作。

ZUP - 通用之字折线构造 Pesavento 形态。图形界面
自 ZUP 平台的第一版本发布以来已过了十年时间, 期间它经历了多次变化和改进。结果就是, 如今我们为 MetaTrader 4 提供了一个独特的图形插件, 您可以快速、便捷地分析行情数据。本文介绍如何使用 ZUP 指标平台的图形界面。

在您的网站上免费嵌入 MetaTrader 4/5 网页版终端并赚取利润
交易者会非常熟悉 WebTerminal, 它允许直接从浏览器在金融市场上交易。将 WebTerminal 小部件添加到您的网站 — 这样做是绝对免费的。如果您有网站, 您可开始向经纪商引荐潜在客户 — 我们已为您准备好了一个即用型的网页版解决方案。您需要做的所有事情就是将一个 iframe 嵌入您的网站。

采用栈式 RBM 的深度神经网络。自训练, 自控制
本文是有关深度神经网络和预测器选择的前文之续篇。在此我们将涵盖由栈式 RBM 初始化的深度神经网络特性, 以及它在 "darch" 软件包里的实现。

跨平台智能交易程序: 订单
MetaTrader 4 和 MetaTrader 5 在处理交易请求时使用不同的约定。本文讨论使用类对象来表达由服务器处理的交易的可能性, 目的是让跨平台智能交易程序可以无视交易平台版本和使用模式均可工作。

跨平台智能交易程序: 重用来自 MQL5 标准库的控件
在 MQL5 标准库里存在的一些控件被证明在 MQL4 版本的跨平台智能交易程序里十分有用。本文涉及令某些 MQL5 标准库的控件与 MQL4 编译器兼容的方法。

在MQL中操作套接字,或者如何成为信号提供者
套接字(Sockets)… 如果没有它们,我们的IT世界还可能存在吗?时光倒转回1982年,再到现在,它们每分每秒都与我们同在,这是网络的基础,是我们所居住的 Matrix 世界的神经末梢。

EA交易的自我优化: 进化与遗传算法
本文涵盖的内容是提出了进化算法主要原则,以及它们的特点和多样性。我们将使用一个简单的EA交易作为实例来做实验,来展示如何通过优化使我们的交易系统获益,我们将探讨在软件程序中实现遗传、进化以及其它类型的优化,并且在优化交易系统的预测器集合与参数时提供示例程序。

交易员的正则表达式
正则表达式 (regular expression) 是通过应用特定的规则来处理文本的一种特殊语言, 也简称为 regex 或 regexp。在本文中, 我们将要展示如何利用 RegularExpressions 库的 MQL5 版本来处理交易报告, 以及使用它处理之后的优化结果。

通用智能交易系统:自定义追踪止损(第六章)
通用智能交易系统的第六章介绍追踪止损功能的用法。本文将指导你如何使用通用规则创建一个自己的追踪止损模型,以及如何将其添加到交易引擎中来实现自动管理持仓头寸的功能。

如何采用 MQL5 创建用于 Telegram 的 bots
本文包含了采用 MQL5 逐步创建用于 Telegram 的 bots 教程。对于那些期望将自己的交易机器人与移动终端同步的用户来说, 这些信息十分有用。文章里的 bots 例程可以提供交易信号, 从网站上搜索情报, 发送有关账户余额信息以及图表报价和截图至您的智能手机。

通用智能交易系统:支持挂单和对冲(第五章)
本文是对CStrategy交易引擎的进一步描述。由于交易者的广泛需要,我们向交易引擎中添加了支持挂单的相关函数。同时,最新版的MetaTrader 5现在也支持了具有对冲选项的帐户。同样的功能也添加到了CStrategy中。本文给出了使用挂单进行交易和在账户中用CStrategy类进行对冲交易的详细算法描述。

通用智能交易系统:组合交易及管理策略组合(第四章)
在最后一篇关于CStrategy交易引擎的系列文章中,我们将考虑多个交易算法同时运行,学习如何从XML文件加载策略,并将给出一个简单的面板,用于从可执行模块中选择EA,并管理它们的交易模式。

通用EA:自定义策略和辅助交易类(第三章)
在本文中,我们将继续分析CStrategy交易引擎的算法。这系列文章的第三篇包含如何使用这种方法开发特定的交易策略样例的详细分析。需特别关注辅助算法— 智能交易日志系统以及使用索引方式(Close[1],Open[0]等)访问数据。

通过 MQL4 读取 RSS 新闻递送
本文讨论了利用 HTML 标签分析的函数通过 MQL4 读取 RSS(简易信息聚合)标记的示例。 我们将尝试制作一个半成品,它可以继续转变为新闻指示器或 MQL4 语言的 RSS 阅读器。

MetaTrader 4 Expert Advisor 与外部世界交换信息
一个供 МetaТrader 4 Expert Advisor 与外部世界进行信息交换的简单、通用而可靠的解决方案。 信息的提供商和用户可能使用不同的计算机,连接是通过全局 IP 地址实现的。

通用智能交易系统:交易策略的模式(第一章)
任何一个智能交易系统(EA)的开发人员,无论编程技能如何,每天都面临着同样的交易目标和算法问题的困扰,即应该如何建立一个可靠的交易系统。本文介绍CStrategy交易引擎,它可以给出这些任务的解决方案,并且向用户提供一种用于描述自定义交易思想的简便机制。

机器学习模型的变量评估和选择
本文重点介绍机器学习模型中输入变量(预测因子)的选择,预处理以及评估的相关细节。同时将探讨新的方法和预测因子深度分析及其对模型过度拟合可能的影响。模型的总体效果很大程度上取决于这一阶段的结果。我们将分析两个包,它们分别提供预测因子选择的新老方法。

单纯使用 MQL5 语言处理 ZIP 档案
MQL5 语言在不断进化, 持续地增加了用于处理数据的新特性. 正因为这些创新, 现在我们可以在不引入第三方DLL库的情况下, 只使用通常的MQL5工具就可以操作ZIP档案了. 本文专注于具体的实现, 并且提供了CZip类作为例子, 它是一个用于读取, 创建和修改ZIP档案的通用工具.

MQL4 作为交易者的工具, 还是高级技术分析
交易首先是对可能性的计算. 有一句谚语, 懒惰是进步的引擎, 这也揭示了指标以及交易系统被开发出来的原因. 绝大多数交易新手学习的都是"成型"的交易理论. 但是, 如果够幸运的话, 还有更多的没有被发现的市场奥秘和用于分析价格走向的工具, 例如那些还没有实现的技术指标或者数学和统计学工具包. 非常感谢比尔.威廉姆斯对市场运行理论的贡献. 虽然,也许现在休息是太早了些.