
Практическое применение нейросетей в трейдинге. Переходим к практике
В статье даны описание и инструкция по практическому применению нейросетевых модулей на платформе Matlab. Также затронуты основные аспекты построения системы торговли с использованием НСМ. Для ознакомления с комплексом в рамках сжатого изложения для данной статьи мне пришлось его несколько модернизировать таким образом, чтобы в одной программе совместить несколько функций НСМ.

Нейросети - это просто
Каждый раз, когда речь заходит об искусственном интеллекте, в голове всплывают какие-то фантастические образы и кажется, что это очень сложное и непостижимое. Но мы все чаще и чаще слышим об искусственном интеллекте в повседневной жизни. В новостных лентах все чаще пишут о каких-либо достижениях с использованием нейронных сетей. В данной статье хочу показать насколько просто каждый может создать свою нейронную сеть и использовать достижения искусственного интеллекта в трейдинге.


Глубокие нейросети (Часть VIII). Повышение качества классификации bagging-ансамблей
В статье рассматриваются три метода, с помощью которых можно повысить качество классификации bagging-ансамблей, и оценивается их эффективность. Проведена оценка того, как влияет оптимизация гиперпараметров нейросетей ELM и параметров постпроцессинга на качество классификации ансамбля.


Глубокие нейросети (Часть VII). Ансамбль нейросетей: stacking
Мы продолжаем строить ансамбли. Теперь к bagging-ансамблю, созданному ранее, добавим обучаемый объединитель — глубокую нейросеть. Одна нейросеть объединяет 7 лучших выходов ансамбля после обрезки. Вторая принимает на вход все 500 выходов ансамбля, обрезает и объединяет их. Нейросети будем строить с помощью пакета keras/TensorFlow из Python. Кратко рассмотрим возможности пакета. Проведем тестирование и сравним качество классификации bagging и stacking ансамблей.


Глубокие нейросети (Часть VI). Ансамбль нейросетевых классификаторов: bagging
Рассмотрим методы построения и обучения ансамблей нейросетей со структурой bagging. Определим особенности оптимизации гиперпараметров индивидуальных нейросетевых классификаторов, составляющих ансамбль. Сравним качество оптимизированной нейросети, полученной в предыдущей статье серии, и созданного ансамбля нейросетей. Рассмотрим возможности дальнейшего улучшения качества классификации полученного ансамбля.


Глубокие нейросети (Часть V). Байесовская оптимизация гиперпараметров DNN
В статье рассматриваются возможности байесовской оптимизации гиперпараметров глубоких нейросетей, полученных различными вариантами обучения. Сравнивается качество классификации DNN с оптимальными гиперпараметрами при различных вариантах обучения. Форвард-тестами проверена глубина эффективности оптимальных гиперпараметров DNN. Определены возможные направления улучшения качества классификации.


Глубокие нейросети (Часть IV). Создание, обучение и тестирование модели нейросети
В статье рассматриваются новые возможности пакета darch (v.0.12.0). Описаны результаты обучения глубокой нейросети с различными типами данных, структурой и последовательностью обучения. Проанализированы результаты.


Глубокие нейросети (Часть III). Выбор примеров и уменьшение размерности
Эта статья продолжает серию публикаций о глубоких нейросетях. Рассматривается выбор примеров (удаление шумовых), уменьшение размерности входных данных и разделение набора на train/val/test в процессе подготовки данных для обучения.


Глубокие нейросети (Часть II). Разработка и выбор предикторов
Во второй статье из серии о глубоких нейросетях рассматриваются трансформация и выбор предикторов в процессе подготовки данных для обучения модели.


Глубокие нейросети (Часть I). Подготовка данных
Эта серия статей продолжает и развивает тему глубоких нейросетей (DNN), которые в последнее время вошли во многие прикладные области, включая трейдинг. Рассматриваются новые направления темы, на практических экспериментах проверяются новые методы и идеи. Первая статья серии посвящена подготовке данных для DNN.


Нейросеть: Самооптимизирующийся советник
Возможно ли создать советник, который согласно командам кода автоматически оптимизировал бы критерии открытия и закрытия позиций с определенной периодичностью? Что произойдет, если реализовать в советнике нейросеть (многослойный персептрон), которая, будучи модулем, анализировала бы историю и оценивала стратегию? Можно дать коду команду на ежемесячную (еженедельную, ежедневную или ежечасную) оптимизацию нейросети с последующим продолжением работы. Таким образом возможно создать самооптимизирующийся советник.


Оценка и выбор переменных для моделей машинного обучения
В статье будут рассмотрены особенности выбора, предподготовки и оценки входных переменных (предикторов) для использования в моделях машинного обучения. Будут рассмотрены новые подходы и возможности по глубокому анализу предикторов, их влияние на возможное переобучение моделей. От результата этого этапа работы во многом зависит общий результат использования моделей. Будут рассмотрены два пакета, предлагающие новый и оригинальный подход к выбору предикторов.


Третье поколение нейросетей: "Глубокие нейросети"
Статья посвящена новому и очень перспективному направлению в машинном обучении — так называемому "глубокому обучению" и конкретней "глубоким нейросетям". Сделан краткий обзор нейросетей 2 поколения, их архитектуры связей и основных видов, методов и правил обучения и их основных недостатков. Далее рассмотрена история появления и развития нейросетей 3 поколения, их основные виды, особенности и методы обучения. Проведены практические эксперименты по построению и обучению на реальных данных глубокой нейросети, инициируемой весами накапливающего автоэнкодера. Рассмотрены все этапы от выбора исходных данных до получения метрик. В последней части статьи приведена программная реализация глубокой нейросети в виде индикатора-эксперта на MQL4/R.


Нейросети бесплатно и сердито - соединяем NeuroPro и MetaTrader 5
Если специализированные нейросетевые программы для трейдинга вам кажутся дорогими и сложными (или наоборот - примитивными), то попробуйте NeuroPro - она на русском языке, бесплатна и содержит оптимальный набор возможностей для любителей. О том, как использовать ее с MetaTrader 5, вы узнаете из этой статьи.


Случайные леса предсказывают тренды
В статье описано использование пакета Rattle для автоматического поиска паттернов, способных предсказывать "лонги" и "шорты" для валютных пар рынка Форекс. Статья будет полезна как новичкам, так и опытным трейдерам.


Машинное обучение: как метод опорных векторов может быть использован в трейдинге
Метод опорных векторов уже достаточно давно применяется в таких областях науки, как биоинформатика и прикладная математика для анализа сложных наборов данных и выявления полезных паттернов, которые используются для классификации данных. Цель данной статьи - показать, что из себя представляет метод опорных векторов, как он работает, и почему он так полезен для выявления сложных паттернов.


Нейронные сети - от теории к практике
В наше время, наверное, каждый трейдер слышал о нейронных сетях и знает, как это круто. В представлении большинства те, которые в них разбираются, это какие-то чуть ли не сверхчеловеки. В этой статье я постараюсь рассказать, как устроена нейросеть, что с ней можно делать и покажу практические примеры её использования.


Подключение нейросетей от NeuroSolutions
Программный пакет NeuroSolutions позволяет не только создавать нейронные сети, но и экспортировать их в DLL. В статье описан процесс создания нейросети, генерации DLL и ее подключения к советнику для торговли в MetaTrader.