
Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных
В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.

Теория категорий в MQL5 (Часть 4): Интервалы, эксперименты и композиции
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана описать некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию
Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.

Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены
Пример использования перцептрона как самодостаточного средства предсказания цены. В статье даются общие понятия, представлен простейший готовый советник и результаты его оптимизации.

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)
Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.

Теория категорий в MQL5 (Часть 3)
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.

Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге
Торговлю по вероятностям можно сравнить с ходьбой по канату — она требует точности, баланса и четкого понимания риска. В мире трейдинга вероятность решает все. Именно от нее зависит результат — успех или неудача, прибыль или убыток. Используя возможности вероятности, трейдеры могут принимать более обоснованные решения, эффективнее управлять рисками и достигать своих финансовых целей. Неважно, опытный вы инвестор или начинающий трейдер, понимание вероятности может стать ключом к раскрытию вашего торгового потенциала. В этой статье мы познакомимся с увлекательным миром вероятностного трейдинга и покажем, как вывести игру в торговлю на новый уровень.

Эксперименты с нейросетями (Часть 5): Нормализация входных параметров для передачи в нейросеть
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)
В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.

Пример ансамбля ONNX-моделей в MQL5
ONNX (Open Neural Network eXchange) — открытый стандарт представления нейронных сетей. В данной статье мы покажем возможность одновременного использования двух ONNX-моделей в одном эксперте.

Измерение информативности индикатора
Машинное обучение стало популярным методом разработки стратегий. В трейдинге традиционно больше внимания уделяется максимизации прибыльности и точности прогнозов. При этом обработка данных, используемых для построения прогностических моделей, остается на периферии. В этой статье мы рассматриваем использование концепции энтропии для оценки пригодности индикаторов при построении прогностических моделей, как описано в книге Тимоти Мастерса "Тестирование и настройка систем рыночной торговли" (Testing and Tuning Market Trading Systems by Timothy Masters).

Машинное обучение и Data Science (Часть 10): Гребневая регрессия
Гребневая регрессия (ридж-регрессия) — это простой метод для уменьшения сложности модели и борьбы с подгонкой, которая может возникнуть в результате простой линейной регрессии.

Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)
Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.

Использование ONNX-моделей в MQL5
ONNX (Open Neural Network Exchange) — открытый стандарт представления моделей нейронных сетей. В данной статье мы рассмотрим процесс создания модели СNN-LSTM для прогнозирования финансовых временных рядов и использование созданной ONNX-модели в MQL5-эксперте.

Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов
Матрица служит основой алгоритмов машинного обучения и компьютеров в целом из-за ее способности эффективно обрабатывать большие математические операции. В Стандартной библиотеке есть все, что нужно, но мы можем расширить ее, добавив несколько функций в файл utils.

Теория категорий в MQL5 (Часть 2)
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.

Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)
Алгоритм растущих деревьев (Saplings Sowing and Growing up, SSG) вдохновлен одним из самых жизнестойких организмов на планете, который является замечательным образцом выживания в самых различных условиях.

Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)
В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.

Эксперименты с нейросетями (Часть 4): Шаблоны
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)
В рассмотренных ранее моделях обучения с подкреплением мы использовали различные варианты сверточных сетей, которые способны идентифицировать различные объекты в исходных данных. Основное преимущество сверточных сетей в способности идентифицировать объекты вне зависимости от их расположением. В тоже время, сверточные сети не всегда справляются с различными деформациями объектов и шумом. Но эти проблемы способна решить реляционная модель.

Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)
Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?

Нейронные сети обратного распространения ошибки на матрицах MQL5
Статья описывает теорию и практику применения алгоритма обратного распространения ошибки на MQL5 с помощью матриц. Прилагаются готовые классы и примеры скрипта, индикатора и эксперта.

Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)
GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.

Теория категорий в MQL5 (Часть 1)
Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.

Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)
Основа стратегии поиска пищи бактерией E.coli (кишечная палочка) вдохновила ученых на создание алгоритма оптимизации BFO. Алгоритм содержит оригинальные идеи и перспективные подходы к оптимизации и достоин дальнейшего изучения.

Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)
Удивительная способность сорняков выживать в самых разнообразных условиях послужило идеей создания мощного алгоритма оптимизации. IWO — один из лучших среди рассмотренных ранее.

Эксперименты с нейросетями (Часть 3): Практическое применение
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)
Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ
Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.

Машинное обучение и Data Science (Часть 9): Алгоритм k-ближайших соседей (KNN)
Это ленивый алгоритм, который не учится на обучающей выборке, а хранит все доступные наблюдения и классифицирует данные сразу же, как только получает новую выборку. Несмотря на простоту, этот метод используется во множестве реальных приложений.

Машинное обучение и Data Science (Часть 8): Кластеризация методом k-средних в MQL5
Для всех, кто работает с данными, включая трейдеров, data mining может открыть совершенно новые возможности, ведь зачастую данные не такие простые, какими кажутся. Человеческому глазу сложно увидеть глубинные закономерности и отношения в наборе данных. Одно из решений — алгоритм К-средних. Давайте посмотрим, полезен ли он.

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)
Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)
Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.

Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)
Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)
Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.

Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия
Полиномиальная регрессия — это гибкая модель, предназначенная для эффективного решения задач, с которыми не справляется модель линейной регрессии. В этой статье узнаем, как создавать полиномиальные модели на MQL5 и извлекать из них выгоду.

Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)
Рассмотрим один из новейших современных алгоритмов оптимизации "Стаи серых волков". Оригинальное поведение на тестовых функциях делает этот алгоритм одним из самых интересных среди рассмотренных ранее. Один из лидеров для применения в обучении нейронных сетей, гладких функций с многими переменными.

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.

Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)
Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.

Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении
Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.