Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных

Нейросети — это просто (Часть 40): Подходы к использованию Go-Explore на большом объеме данных

В данной статье обсуждается применение алгоритма Go-Explore на протяжении длительного периода обучения, так как стратегия случайного выбора действий может не привести к прибыльному проходу с увеличением времени обучения.
preview
Теория категорий в MQL5 (Часть 4): Интервалы, эксперименты и композиции

Теория категорий в MQL5 (Часть 4): Интервалы, эксперименты и композиции

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана описать некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Нейросети — это просто (Часть 39): Go-Explore — иной подход к исследованию

Продолжаем тему исследования окружающей среды в моделях обучения с подкреплением. И данной статье мы рассмотрим ещё один алгоритм Go-Explore, который позволяет эффективно исследовать окружающую среду на стадии обучения модели.
preview
Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Эксперименты с нейросетями (Часть 6): Перцептрон как самодостаточное средство предсказания цены

Пример использования перцептрона как самодостаточного средства предсказания цены. В статье даются общие понятия, представлен простейший готовый советник и результаты его оптимизации.
preview
Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Нейросети — это просто (Часть 38): Исследование с самоконтролем через несогласие (Self-Supervised Exploration via Disagreement)

Одной из основных проблем обучения с подкреплением является исследование окружающей среды. Ранее мы уже познакомились с методом исследования на базе внутреннего любопытства. Сегодня я предлагаю посмотреть на ещё один алгоритм — исследование через несогласие.
preview
Теория категорий в MQL5 (Часть 3)

Теория категорий в MQL5 (Часть 3)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге

Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге

Торговлю по вероятностям можно сравнить с ходьбой по канату — она требует точности, баланса и четкого понимания риска. В мире трейдинга вероятность решает все. Именно от нее зависит результат — успех или неудача, прибыль или убыток. Используя возможности вероятности, трейдеры могут принимать более обоснованные решения, эффективнее управлять рисками и достигать своих финансовых целей. Неважно, опытный вы инвестор или начинающий трейдер, понимание вероятности может стать ключом к раскрытию вашего торгового потенциала. В этой статье мы познакомимся с увлекательным миром вероятностного трейдинга и покажем, как вывести игру в торговлю на новый уровень.
preview
Эксперименты с нейросетями (Часть 5): Нормализация входных параметров для передачи в нейросеть

Эксперименты с нейросетями (Часть 5): Нормализация входных параметров для передачи в нейросеть

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

Нейросети — это просто (Часть 37): Разреженное внимание (Sparse Attention)

В предыдущей статье мы познакомились с реляционными моделями, в архитектуре которых используются механизмы внимания. Одной из особенностей указанных моделей является повышенное использование вычислительных ресурсов. В данной статье будет предложен один их механизмов уменьшения количества вычислительных операций внутри блока Self-Attention. Что позволит увеличить производительность модели в целом.
preview
Пример ансамбля ONNX-моделей в MQL5

Пример ансамбля ONNX-моделей в MQL5

ONNX (Open Neural Network eXchange) — открытый стандарт представления нейронных сетей. В данной статье мы покажем возможность одновременного использования двух ONNX-моделей в одном эксперте.
preview
Измерение информативности индикатора

Измерение информативности индикатора

Машинное обучение стало популярным методом разработки стратегий. В трейдинге традиционно больше внимания уделяется максимизации прибыльности и точности прогнозов. При этом обработка данных, используемых для построения прогностических моделей, остается на периферии. В этой статье мы рассматриваем использование концепции энтропии для оценки пригодности индикаторов при построении прогностических моделей, как описано в книге Тимоти Мастерса "Тестирование и настройка систем рыночной торговли" (Testing and Tuning Market Trading Systems by Timothy Masters).
preview
Машинное обучение и Data Science (Часть 10): Гребневая регрессия

Машинное обучение и Data Science (Часть 10): Гребневая регрессия

Гребневая регрессия (ридж-регрессия) — это простой метод для уменьшения сложности модели и борьбы с подгонкой, которая может возникнуть в результате простой линейной регрессии.
preview
Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Популяционные алгоритмы оптимизации: Электромагнитный алгоритм (ElectroMagnetism-like algorithm, ЕМ)

Статья описывает принципы, методы и возможности применения Электромагнитного алгоритма EM в различных задачах оптимизации. EM-алгоритм является эффективным инструментом оптимизации, способным работать с большими объемами данных и многомерными функциями.
preview
Использование ONNX-моделей в MQL5

Использование ONNX-моделей в MQL5

ONNX (Open Neural Network Exchange) — открытый стандарт представления моделей нейронных сетей. В данной статье мы рассмотрим процесс создания модели СNN-LSTM для прогнозирования финансовых временных рядов и использование созданной ONNX-модели в MQL5-эксперте.
preview
Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов

Матрица служит основой алгоритмов машинного обучения и компьютеров в целом из-за ее способности эффективно обрабатывать большие математические операции. В Стандартной библиотеке есть все, что нужно, но мы можем расширить ее, добавив несколько функций в файл utils.
preview
Теория категорий в MQL5 (Часть 2)

Теория категорий в MQL5 (Часть 2)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL5-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)

Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)

Алгоритм растущих деревьев (Saplings Sowing and Growing up, SSG) вдохновлен одним из самых жизнестойких организмов на планете, который является замечательным образцом выживания в самых различных условиях.
preview
Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)

В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.
preview
Эксперименты с нейросетями (Часть 4): Шаблоны

Эксперименты с нейросетями (Часть 4): Шаблоны

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)

Нейросети — это просто (Часть 36): Реляционные модели обучения с подкреплением (Relational Reinforcement Learning)

В рассмотренных ранее моделях обучения с подкреплением мы использовали различные варианты сверточных сетей, которые способны идентифицировать различные объекты в исходных данных. Основное преимущество сверточных сетей в способности идентифицировать объекты вне зависимости от их расположением. В тоже время, сверточные сети не всегда справляются с различными деформациями объектов и шумом. Но эти проблемы способна решить реляционная модель.
preview
Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)

Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?
preview
Нейронные сети обратного распространения ошибки на матрицах MQL5

Нейронные сети обратного распространения ошибки на матрицах MQL5

Статья описывает теорию и практику применения алгоритма обратного распространения ошибки на MQL5 с помощью матриц. Прилагаются готовые классы и примеры скрипта, индикатора и эксперта.
preview
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)

GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
preview
Теория категорий в MQL5 (Часть 1)

Теория категорий в MQL5 (Часть 1)

Теория категорий представляет собой разнообразный и расширяющийся раздел математики, который пока относительно не освещен в MQL-сообществе. Эта серия статей призвана осветить некоторые из ее концепций для создания открытой библиотеки и дальнейшему использованию этого замечательного раздела в создании торговых стратегий.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации бактериального поиска пищи (Bacterial Foraging Optimization — BFO)

Основа стратегии поиска пищи бактерией E.coli (кишечная палочка) вдохновила ученых на создание алгоритма оптимизации BFO. Алгоритм содержит оригинальные идеи и перспективные подходы к оптимизации и достоин дальнейшего изучения.
preview
Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Популяционные алгоритмы оптимизации: Оптимизация инвазивных сорняков (Invasive Weed Optimization - IWO)

Удивительная способность сорняков выживать в самых разнообразных условиях послужило идеей создания мощного алгоритма оптимизации. IWO — один из лучших среди рассмотренных ранее.
preview
Эксперименты с нейросетями (Часть 3): Практическое применение

Эксперименты с нейросетями (Часть 3): Практическое применение

Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
preview
Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Популяционные алгоритмы оптимизации: Алгоритм летучих мышей (Bat algorithm - BA)

Сегодня изучим алгоритм летучих мышей (Bat algorithm - BA), который отличается удивительной сходимостью на гладких функциях.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Возможности Мастера MQL5, которые вам нужно знать (Часть 04): Линейный дискриминантный анализ

Современный трейдер почти всегда находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера в его поисках.
preview
Машинное обучение и Data Science (Часть 9): Алгоритм k-ближайших соседей (KNN)

Машинное обучение и Data Science (Часть 9): Алгоритм k-ближайших соседей (KNN)

Это ленивый алгоритм, который не учится на обучающей выборке, а хранит все доступные наблюдения и классифицирует данные сразу же, как только получает новую выборку. Несмотря на простоту, этот метод используется во множестве реальных приложений.
preview
Машинное обучение и Data Science (Часть 8): Кластеризация методом k-средних в MQL5

Машинное обучение и Data Science (Часть 8): Кластеризация методом k-средних в MQL5

Для всех, кто работает с данными, включая трейдеров, data mining может открыть совершенно новые возможности, ведь зачастую данные не такие простые, какими кажутся. Человеческому глазу сложно увидеть глубинные закономерности и отношения в наборе данных. Одно из решений — алгоритм К-средних. Давайте посмотрим, полезен ли он.
preview
Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Популяционные алгоритмы оптимизации: Светлячковый алгоритм (Firefly Algorithm - FA)

Рассмотрим метод оптимизации "Поиск с помощью светлячкового алгоритма" (FA). Из аутсайдера путем модификации алгоритм превратился в настоящего лидера рейтинговой таблицы.
preview
Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)

Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.
preview
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)

Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.
preview
Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Нейросети — это просто (Часть 35): Модуль внутреннего любопытства (Intrinsic Curiosity Module)

Продолжаем изучение алгоритмов обучения с подкреплением. Все ранее рассмотренные нами алгоритмы требовали создания политики вознаграждения таким образом, чтобы агент мог оценить каждое свое действие на каждом переходе из одного состояния системы в другое. Но такой подход довольно искусственный. На практике же между действием и вознаграждением существует некоторый временной лаг. В данной статье я предлагаю Вам познакомиться с алгоритмом обучения модели, способным работать с различными временными задержками от действия до вознаграждения.
preview
Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия

Машинное обучение и Data Science (Часть 07): Полиномиальная регрессия

Полиномиальная регрессия — это гибкая модель, предназначенная для эффективного решения задач, с которыми не справляется модель линейной регрессии. В этой статье узнаем, как создавать полиномиальные модели на MQL5 и извлекать из них выгоду.
preview
Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)

Популяционные алгоритмы оптимизации: Оптимизация Стаей Серых Волков (Grey Wolf Optimizer - GWO)

Рассмотрим один из новейших современных алгоритмов оптимизации "Стаи серых волков". Оригинальное поведение на тестовых функциях делает этот алгоритм одним из самых интересных среди рассмотренных ранее. Один из лидеров для применения в обучении нейронных сетей, гладких функций с многими переменными.
preview
Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция

Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
preview
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)

Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.
preview
Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении

Нейросети — это просто (Часть 33): Квантильная регрессия в распределенном Q-обучении

Продолжаем изучение распределенного Q-обучение. И сегодня мы посмотрим на данный подход с другой стороны. О возможности использования квантильной регрессии в решение вопрос прогнозирования ценовых движений.