Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo
Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.
Algoritmo de otimização por reações químicas — Chemical Reaction Optimisation, CRO (Parte II): Montagem e resultados
Na segunda parte do artigo, reuniremos os operadores químicos em um único algoritmo e apresentaremos uma análise detalhada de seus resultados. Descobriremos como o método de otimização por reações químicas (CRO) superou o desafio de resolver problemas complexos em funções de teste.
Algoritmo de otimização por reações químicas — Chemical Reaction Optimization, CRO (Parte I): A química dos processos na otimização
Na primeira parte deste artigo, mergulharemos no mundo das reações químicas e descobriremos uma nova abordagem para a otimização! O método de otimização por reações químicas (CRO) utiliza os princípios das leis da termodinâmica para alcançar resultados eficazes. Revelaremos os segredos da decomposição, síntese e outros processos químicos que servem de base para este método inovador.
Desenvolvendo um sistema de Replay (Parte 74): Um novo Chart Trade (I)
Neste artigo começaremos a modificar o último código visto nesta sequencia sobre o Chart Trade. Estas mudanças são necessárias, para adequar o código ao modelo atualmente desenvolvido do sistema de replay/simulador. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos
Neste artigo, adicionaremos herança ao código anterior e ao novo. Implementaremos uma nova estrutura de banco de dados para garantir um bom desempenho. Além disso, criaremos uma classe de gerenciamento de risco para calcular volumes.
Desenvolvendo um sistema de Replay (Parte 73): Uma comunicação inusitada (II)
Neste artigo, veremos como transferir informações em tempo real entre o indicador e o serviço, entender por que podem surgir problemas ao modificar o tempo gráfico e como resolvê-los corretamente. Como bônus, você terá acesso à última versão da aplicação de replay/simulador. O conteúdo é exclusivamente didático e não deve ser considerado como uma aplicação para outros fins.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis
Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
Funcionalidades do Assistente MQL5 que você precisa conhecer (Parte 16): Método de componentes principais com autovetores
Este artigo discute o método de componentes principais, um método de redução da dimensionalidade ao analisar dados, e como ele pode ser implementado usando autovalores e vetores. Como sempre, vamos tentar desenvolver um protótipo da classe de sinais para EA que pode ser usado no Assistente MQL5.
Visualizações de negociações no gráfico (Parte 2): Desenho gráfico de informações
Escreveremos do zero um script para facilitar a captura de capturas de tela (print-screens) de negociações, visando a análise de entradas. Em um único gráfico, será conveniente exibir todas as informações necessárias sobre uma negociação específica, com a possibilidade de desenhar diferentes timeframes.
Desenvolvendo um sistema de Replay (Parte 72): Uma comunicação inusitada (I)
O que iremos construir será complexo de entender. Por isso, apresentarei apenas o início da construção neste artigo. Leia com calma, pois entender o conteúdo aqui é essencial para o próximo passo. O objetivo deste conteúdo é apenas didático, sem aplicação prática além do aprendizado e estudo dos conceitos apresentados.
Elementos da análise correlacional em MQL5: Critério de independência qui-quadrado de Pearson e relação de correlação
O artigo aborda as ferramentas clássicas da análise correlacional. São apresentadas as bases teóricas breves, bem como a implementação prática do critério de independência qui-quadrado de Pearson e o coeficiente de relação de correlação.
As modificações mais conhecidas do algoritmo de busca cooperativa artificial (Artificial Cooperative Search, ACSm)
Neste artigo, examinamos a evolução do algoritmo ACS: três modificações visando melhorar as características de convergência e eficácia do algoritmo. A transformação de um dos principais algoritmos de otimização. Das modificações de matrizes a abordagens revolucionárias para a formação de populações.
Data Science e Machine Learning (Parte 24): Previsão de Séries Temporais no Forex Usando Modelos de IA Clássicos
Nos mercados de forex, é muito desafiador prever a tendência futura sem ter uma ideia do passado. Poucos modelos de machine learning são capazes de fazer previsões futuras considerando valores passados. Neste artigo, vamos discutir como podemos usar modelos clássicos (não específicos para séries temporais) de Inteligência Artificial para superar o mercado.
Desenvolvendo um sistema de Replay (Parte 71): Acertando o tempo (IV)
Aqui neste artigo, mostrarei como implementar o que foi visto no artigo passado, dentro do serviço de replay/simulação. Mas como tudo nesta vida, costuma dar algum tipo de problema. Aqui não foi uma exceção. Então acompanhe o artigo e veja o que será tema para o próximo artigo desta serie. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Algoritmo de Busca Cooperativa Artificial (Artificial Cooperative Search, ACS)
Apresentamos o algoritmo Artificial Cooperative Search (ACS). Este método inovador utiliza uma matriz binária e várias populações dinâmicas, baseadas em relações mutualísticas e cooperação, para encontrar rapidamente e com precisão soluções ótimas. A abordagem única do ACS em relação a "predadores" e "presas" permite alcançar excelentes resultados em problemas de otimização numérica.

Integração de Modelos Ocultos de Markov no MetaTrader 5
Neste artigo, demonstramos como os Modelos Ocultos de Markov, treinados utilizando Python, podem ser integrados em aplicações MetaTrader 5. Os Modelos Ocultos de Markov são uma poderosa ferramenta estatística utilizada para modelar dados de séries temporais, onde o sistema modelado é caracterizado por estados não observáveis (ocultos). Uma premissa fundamental dos HMMs é que a probabilidade de estar em um determinado estado em um momento específico depende do estado do processo no instante anterior.

Visualizações de negociações no gráfico (Parte 1): Escolha do período para análise
Estamos escrevendo do zero um script que facilitará a exportação de capturas de tela das negociações para a análise das entradas de trades. Será conveniente exibir todas as informações necessárias sobre uma negociação em um único gráfico, com a possibilidade de desenhar diferentes timeframes.

Desenvolvendo um sistema de Replay (Parte 70): Acertando o tempo (III)
Neste artigo mostrarei a maneira correta e funcional de usar a função CustomBookAdd. Apesar de parecer se algo simples, fazer isto tem muitas implicações. Entre elas permitir que digamos ao indicador de mouse, se o ativo customizado está em leilão; Em negociação, ou o mercado está fechado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Desenvolvimento de robô em Python e MQL5 (Parte 2): Escolha do modelo, criação e treinamento, testador customizado Python
Continuamos o ciclo de artigos sobre a criação de um robô de trading em Python e MQL5. Hoje, vamos resolver a tarefa de escolher e treinar o modelo, testá-lo, implementar a validação cruzada, busca em grade, além de abordar o ensemble de modelos.

Algoritmo de Fechadura Codificada (Code Lock Algorithm, CLA)
Neste artigo, vamos repensar as fechaduras codificadas, transformando-as de mecanismos de proteção em ferramentas para resolver tarefas complexas de otimização. Descubra o mundo das fechaduras codificadas, não como simples dispositivos de segurança, mas como inspiração para uma nova abordagem à otimização. Vamos criar uma população inteira de "fechaduras", onde cada uma representa uma solução única para um problema. Em seguida, desenvolveremos um algoritmo que "destrancará" essas fechaduras e encontrará soluções ideais em várias áreas, desde o aprendizado de máquina até o desenvolvimento de sistemas de trading.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 21): Testando com Dados do Calendário Econômico
Os dados do Calendário Econômico não estão disponíveis para testes com Expert Advisors no Strategy Tester, por padrão. Vamos explorar como bancos de dados poderiam ajudar a contornar essa limitação. Portanto, neste artigo, exploramos como os bancos de dados SQLite podem ser usados para arquivar notícias do Calendário Econômico, de modo que os Expert Advisors montados pelo Wizard possam usá-los para gerar sinais de trade.

Data Science e Machine Learning (Parte 23): Por que o LightGBM e o XGBoost superam muitos modelos de IA?
Essas técnicas avançadas de árvores de decisão com boosting de gradiente oferecem desempenho superior e flexibilidade, tornando-as ideais para modelagem financeira e trading algorítmico. Aprenda como aproveitar essas ferramentas para otimizar suas estratégias de trading, melhorar a precisão preditiva e ganhar uma vantagem competitiva nos mercados financeiros.

Desenvolvendo um sistema de Replay (Parte 69): Acertando o tempo (II)
Aqui vamos entender, por que estamos precisamos usar a chamada iSpread. Ao mesmo tempo, vamos entender como o sistema consegue nos informar o tempo restante da barra, quando não temos ticks a serem usados para fazer tal coisa. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)
Neste artigo, vamos explorar o novo algoritmo de otimização autoral CTA (Comet Tail Algorithm), que se inspira em objetos cósmicos únicos, nomeadamente em cometas e suas impressionantes caudas, formadas quando se aproximam do Sol. Esse algoritmo é baseado no conceito de movimento dos cometas e suas caudas, e foi projetado para encontrar soluções ótimas em problemas de otimização.

Integre seu próprio LLM no EA (Parte 3): Treinando seu próprio LLM com CPU
Com o rápido desenvolvimento da inteligência artificial hoje em dia, os modelos de linguagem (LLMs) são uma parte importante da IA, então devemos pensar em como integrar LLMs poderosos ao nosso trading algorítmico. Para a maioria das pessoas, é difícil ajustar esses modelos poderosos de acordo com suas necessidades, implantá-los localmente e depois aplicá-los ao trading algorítmico. Esta série de artigos adotará uma abordagem passo a passo para alcançar esse objetivo.

Desenvolvendo um sistema de Replay (Parte 68): Acertando o tempo (I)
Aqui vamos dar prosseguimento, ao trabalho de conseguir fazer com que o indicador de mouse, consiga nos informar o tempo restante da barra, quando em momentos de baixa liquidez. Apesar de a primeira vista parecer algo simples, você verá que esta tarefa é bem mais complicada do que parece. Isto por conta de alguns percalços que teremos de enfrentar. Então acompanhe esta primeira parte para entender as próximas.

Algoritmo de Evolução do Casco da Tartaruga (Turtle Shell Evolution Algorithm, TSEA)
Um algoritmo de otimização único, inspirado na evolução do casco da tartaruga. O algoritmo TSEA emula a formação gradual de áreas queratinizadas da pele, que representam as soluções ótimas para o problema. As melhores soluções tornam-se mais "duras" e se aproximam da superfície externa, enquanto as soluções menos bem-sucedidas permanecem "macias" e ficam na parte interna. O algoritmo utiliza a clusterização das soluções com base na qualidade e na distância, permitindo preservar as opções menos bem-sucedidas, garantindo flexibilidade e adaptabilidade.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 20): Regressão Simbólica
A Regressão Simbólica é uma forma de regressão que começa com poucas ou nenhuma suposição sobre qual seria o modelo subjacente que mapeia os conjuntos de dados em estudo. Embora possa ser implementada por Métodos Bayesianos ou Redes Neurais, analisamos como uma implementação com Algoritmos Genéticos pode ajudar a personalizar uma classe de sinal especialista utilizável no MQL5 Wizard.

Algoritmo de otimização baseado em brainstorming — Brain Storm Optimization (Parte II): Multimodalidade
Na segunda parte do artigo, vamos para a implementação prática do algoritmo BSO, realizaremos testes com funções de teste e compararemos a eficiência do BSO com outros métodos de otimização.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 19): Inferência Bayesiana
A inferência bayesiana é a adoção do Teorema de Bayes para atualizar hipóteses de probabilidade à medida que novas informações são disponibilizadas. Isso intuitivamente leva à adaptação na análise de séries temporais, então veremos como podemos usar isso na construção de classes personalizadas, não apenas para o sinal, mas também para gerenciamento de dinheiro e trailing-stops.

Modificação do Grid-Hedge EA em MQL5 (Parte IV): Otimizando a Estratégia de Grid Simples (I)
Nesta quarta parte, revisitamos os Expert Advisors (EAs) Simple Hedge e Simple Grid desenvolvidos anteriormente. Nosso foco agora é refinar o Simple Grid EA por meio de análise matemática e uma abordagem de força bruta, visando o uso ideal da estratégia. Este artigo mergulha profundamente na otimização matemática da estratégia, preparando o terreno para futuras explorações de otimização baseada em código em artigos posteriores.

Regressões Espúrias em Python
Regressões espúrias ocorrem quando duas séries temporais exibem um alto grau de correlação puramente por acaso, levando a resultados enganosos na análise de regressão. Em tais casos, embora as variáveis possam parecer relacionadas, a correlação é coincidencial e o modelo pode ser pouco confiável.

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios
Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.

Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle
Neste artigo mostrarei o que um pouco de refinamento no código é capaz de fazer. Tal refinamento tem como objetivo tornar mais simples o nosso código. Fazer um maior uso das chamadas de biblioteca do MQL5. Mas principalmente fazer com que o nosso código se torne bem mais estável, seguro e fácil de ser usado por outras classe, ou outros códigos que por ventura construiremos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro
Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.

Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal
No mundo acelerado dos mercados financeiros, separar sinais significativos do ruído é crucial para o sucesso nas operações de trading. Ao empregar arquiteturas sofisticadas de redes neurais, os autoencoders se destacam ao descobrir padrões ocultos dentro dos dados de mercado, transformando entradas ruidosas em insights acionáveis. Neste artigo, exploramos como os autoencoders estão revolucionando as práticas de trading, oferecendo aos traders uma ferramenta poderosa para melhorar a tomada de decisões e ganhar uma vantagem competitiva nos mercados dinâmicos de hoje.

Desenvolvendo um sistema de Replay (Parte 66): Dando play no serviço (VII)
Aqui neste artigo, vamos implementar uma primeira solução, para que possamos saber o momento em que uma nova barra poderá vim a surgir no gráfico. Esta solução se adequa a diversas situações. Porém entender como a mesma foi desenvolvida pode lhe ajudar a entender diversas questões. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Critério de homogeneidade de Smirnov como indicador de não-estacionaridade de séries temporais
Este artigo analisa um dos mais conhecidos critérios de homogeneidade não-paramétricos, o critério de Smirnov. São analisados tanto dados modelados quanto cotações reais. É apresentado um exemplo de construção do indicador de não-estacionaridade (iSmirnovDistance).

O Método de Agrupamento de Manipulação de Dados: Implementando o Algoritmo Combinatório em MQL5
Neste artigo, continuamos nossa exploração da família de algoritmos do Método de Agrupamento de Manipulação de Dados, com a implementação do Algoritmo Combinatório, juntamente com sua versão refinada, o Algoritmo Combinatório Seletivo em MQL5.

Superando Desafios de Integração com ONNX
ONNX é uma ótima ferramenta para integrar códigos complexos de IA entre diferentes plataformas, sendo uma ferramenta excelente, mas que vem com alguns desafios que devem ser superados para aproveitar ao máximo suas capacidades. Neste artigo, discutimos os problemas mais comuns que você pode enfrentar e como mitigá-los.